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Abstract

The Seismically Stable Platform (SSP) at the Central
Inertial Guidance Facility, Holloman AFB, is a dual
reactionary mass isolation platform'designed to remove
19";8 g RMS/Hz accelerations and £0.02 arcseconds angular
position or tilt disturbances in all axes from a test
environment intended for evaluating %Third Generation Gyro™
inertial instruments. Disturbances are removed by two
stages of pneumatic isolators comprising a passive isolation
system and augmented by an active control system to cover
the operational bandwidtl from 18 ® Hz to 100 Hz.

A dynamic model of the SSP confirmed the passive
vibration transmissibilities and identified severe
limitations on gain and phase margin to the active controller
design. The proposed digital controllers identified the
SSP to be weakly controllable. The discrete state
representation of the SSP and control law exhibited numerical
difficulties detrimental to system stability.

This study recommends single stage pneumatic isolation

or fluid isolators monitored by disturbance parameter

estimation schemes.

XVvi



ANALYSIS AND DESIGN
OF A DIGITAL CONTROLLER
FOR A SEISMICALLY STABLE PLATFORM

I. Introduction

The purpose of this investigation is to analyze and
design an active control system for the Seismically Stable
Platform (SSP) at the Central Inertial Guidance Test Facility,
(CIGTF) at Holloman Air Force Base, New Mexico.

An inertial test platform such as the Seismically
Stable Platform must have translation and rotational ground
vibrations attenuated or isolated below the candidate test
instrument's measurement sensitivity thresholds. An active
controller should augment the existing passive isolation
system to limit SSP translations to less than 10 ®g RMS/Hz
and angular tilts to less than 0.02 arcseconds over the
required bandwidth of 10 ° Hz to 100 Hz. (Ref 1, 14).

To understand the implication of these specifications,

a historical overview of seismic platforms is discussed before

the problem and approach are revealed.

Historical Perspective

Seismic isolation platforms serve as a controlled

environment to test and evaluate inertial grade instruments




needed in aerospace navigation and guidance applications.
New missions have demanded gr=ater accuracy and sensitivity.
To meet these instrument requirements, the Third Generation
of Gyros (TGG) has emerged from instrument technology making
past test procedures and environments ineffective. (Ref 15). To
judge properly instrument attributes, the bias, drifts, and
accuracy profiles must be distinguishable and predictable
from test platform backgrouné disturbances. Angular tilts
and specific force or acceleration disturbances are critical
in gyroscope and accelerometer sensor evaluations. Distur-
bances may be either measurecd, modeled and compensated

in test profiles or completely (or nearly) removed or
isolated from testing parameters. The SSP will isolate
disturbances.

Early Air Force efforts in gyro testing and tilt
stabilization were at the Frankx J. Sieler Research Ilaboratory,
United States Air Force Acadeny using the Iso-Pad isolation
test platform (Ref 21). Numerous efforts (Ref 4, 5, 23)
were made to control tilt or position as well as angular
acceleration (translational acceleration, in accelerometer
testing). Tilt control was vossible but translational
aécelerations were limited to 10 ®g RMS/Hz above 10 Hz
only (Ref 3:18).

On the basis of the Iso-Pad control design efforts, a

seismic platform was needed with a lower structure resonance.

L]




Engineers at FJSRL and CIGTF reviewed the dual reactionary
mass concept and had an isolation system constructed at

Holloman A.F.B. (Ref 24).

Background

The dual reactionary mass system was added to an
existing seismic concrete block by the contractor, Measure-
ment Analysis Corporation (MAC). Concrete pillars were
added to the seismic block and a steel box-~beam ring was
placed on pneumatic isolators atop the pillars. On the
ring were placed yet another set of pneumatic isolators with
a steel platform which would contain the gyro table work
station. The pneumatic isolators and steel structures
comprise a passive isolation system, as shown in Figure 1.1.
This system is designed to respond as a double low pass
filter above 20 Hz, limiting tilt less than $0.02 arcseconds,
and accelerations to less than 10 ®g RMS/Hz. Recent
measurements by CIGTF engineers (Ref 18) do not support the
desired passive response. These discrepancies are expanded

in Chapter IV, SSP Passive Response.

Problem

The objective of this thesis investigation is to analyze
and design an active control system that stabilizes the CIGTF
Seismically Stable Platform (SSP) to within #0.02 arcseconds

rotation and 10 ®g RMS/Hz translation in all axes over the
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Figure 1.1. SSP Passive Isolation System




bandwidth of 10 ® Hz to 20 Hz. These constraints result
from accuracy and sensitivities generic to the TGG evaluation

and are expanded in Chapter II, SSP Functional Requirements.

Scope and Assumptions

The analysis fully investigates the SSP dynamics model
to predict and to verify passive response characteristics.

A control law is built on the SSP dynamics to meet the
specifications using Linear Quadratic (LQ) theory. (Ref 6:415}.
The Separation Theorem or Principle (Ref 12) is imposed

to consider the state estimation and controller design issues
separately. Basically, the control law considerations are
investigated assuming the SSP sensors provide perfect state
information. The state representation looks at the three

body dynamics of the seismic concrete block and two structural
members of the SSP perturbed about a nominal system orientation.
Only first order effects and linearized equations are included
in the SSP perturbation models. The dynamics development
clearly identifies when these approximations are made,
completely portraying rotation and translation coupling modes.
Finally, the study assumes that the passive isolation system

is effective in removing rotational and translation disturbances
from 20 Hz to 100 Hz. The individual body structural reson-
ances of the SSP are assumed to be above 100 Hz (Ref 14:E-3).
The control law assumes influence over bandwidth of 10 ° Hz to

20 Hz.




The FPS - foot, pound, second - units system is used
throughout the study to be consistent with other SSP reports
(Ref 14:D-19, Ref 20). Mass units are expressed in lb-sec?/ft
with the acceleration due to gravity, a constant, equal to

32.2 ft/sec? (Ref 10).

Approach

The plan of attack is divided in two areas - dynamics
model and control law development.

The control law specifies a Linear Quadratic (LQ) -
Proportional Plus Integral (PI) controller as the optimum
solution (Ref 6). LQ cost weighting emphasizes system
states critical to meeting a given performance specification.
Proportional Plus Integral control structures are recommended
typically (Ref 6:340) for disturbance rejection and were
proposed by MAC for the SSP (Ref 14:D~22). Discrete time
and actuator energy cost criteria validate the feasibility

of the control problem solution.

Overview

The remainder of the thesis is divided into a set of
controller requirements, dynamics modeling, passive response
and LQ design.

Chapter 1I, SSP Functional Requirements, covers the
important dynamic model constraints and expected control

responses needed to outline the active controller design.




Chapter III, SSP Dynamics, develops the full six
degree of freedom equations for each of the three body
complete systems.

Chapter IV, SSP Passive Response, examines various
stages of isolation for transmissibility and stability
analysis.

Chapter V, Active Controller Design, develops the
truth model and the reduced order state equations into a
control law resulting in a steady error within the problem
requirements. Reduced order alternative models are compared
with the system truth model.

Chapter VI, Conclusions and Recommendations, summarizes
the dynamics modeling and controller problem which leads to

recommendations for future work.




II. S8SP Functional Requirements

Introduction

To understand better the Seismically Stable Platform
(sspP) specifications, a discussion of the generating inertial
instrument's requirements and the SSP is necessary. 1In 1975,
the Charles Stark Draper Laboratory commented on gyro testing
environments needed to support the Third Generation of Gyros
(TGG) (Ref 15). These considerations are the driving force
behind SSP development. With these constraints in mind, the
SSP system analysis considers tilt disturbance constraints
which are important in gyro evaluation, and translation
acceleration disturbance constraints as the prime error in

accelerometer testing.

SSP Description

The SSP is a dual reactionary mass isolation platform
designed to have a passive transmissibility to seismic
disturbances of -40 dB/decade above 20 Hz to 100 Hz
(Ref 15:5). The active controller is concerned with the
transmissibility from 10 ® Hz to 20 Hz.

The dual reactionary mass concept is explained best by

describing the SSP subsystems in Figure 2.1. The top isolation

level or subsystem is a welded steel cylinder with reinforced
walls, suspended by its top at four symmetrical horizontal

points by steel boxed beam tabs. This upper level housing




Upper Level

“———Second Stage
Isolation

Lower Level

& ————— First Stage
Isolation

Pier or Seismic
Mass

Figure 2.1 SSP Subsystems




is recessed for a gyro test table. Below the suspension
points are four Barry AL-133-12 pneumatic isolators, referred
to as the "Second Stage Isolation" in the study analysis.

The top steel structure and gyro table are the "Upper Level",
known as primary mass or reactionary mass in other literature
(Ref 14).

Directly below the second stage isolation is a second
subsystem, the "Lower Level" which is also identified in
other reports as the secondary mass or intermediate mass.

The lower level is an octagonal box beam recessed on the
top and bottom to receive the second stage and first stage
pneumatic isolators as shown.

Appendix A discusses the subsystem dimensions and
physical attributes. The upper level mass is twice the
weight of the lower level to give a two stage transmissibility
attenuation to disturbances, with the lower stage giving
the first low pass second order response, and the second
stage following a lower freguency cutoff second order response.
Chapter IV, Passive Response, fully explains the theoretical
responses and transmissibility concept.

The SSP is centered on a concrete seismic mass atop
concrete pillars or piers. Future analysis will include
the concrete piers and seismic block as simply the "pier”.
The pier subsystem is physically isolated below ground
level from the laboratory vibration environment by a rubber
grouted air gap. Fiqure 2.2 shows the general orientation

of the SsP, the seismic pier and laboratory. The seismic

10
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block subsystem and supporting soil should offer yet another
second order low pass response concerned with frequencies
higher than the SSP isolation. Again, Chapter IV

develops the expected dynamics further.

The supporting piers, lower and upper structures and
the pneumatic isolators comprise the passive isolation
system. How the SSP problem specifications and the TGG
specifications apply to the passive system are examined

next.

Third Generation Gyro (TGG) Specifications

Quoting from Charles Stark Draper laboratory (CSDL)

Report, (Ref 15:1).

"The resolution of these new inertial
instruments is expected to be so fine
that instrumentation errors and uncer-
tainties must be modeled and verified

in order to establish the sources of
instrument noise... the following
assumptions will be made for performance
goals of the next generation of
instruments:

(1) Angular motion uncertainty 10 ‘meru.
(2) TIinear motion uncertainty 10 °g.

(3) Measurement bandwidth 10 Hz to
10 *Hz."

Each CSDL - TGS specification is examined to determine
the implied constraints on the SSP dynamics and performance

specifications.
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Item (1) concerns the angular motion uncertainty of
10" ° meru's - milli earth rate units, or 1.5 X 10 7 arcseconds/
second. This conversion is shown in Appendix B. The SSP
specifications do not include an angular acceleration
requirement. For a pure #0.02 arcsecond tilt and using time
averaging (see Appendix B), the angular acceleration over
the 1078 Hz to 100 Hz bandwidth results in angular rates
from + 2 X 10 !° arcseconds/second to 2 arcseconds/second.
This study was not given a pure angular acceleration specifica-
tion. Translation accele:ations are limited in all axes to
10 8 g RMS/Hz.

Item (2) arises from a navigational error of one
hundred feet on the Earth's surface averaged over an hour
flight. Appendix B shows how the 10 ° g measure is achieved
and demonstrates the use of average linear velocity and
acceleration approximations. The SSP translation acceleration
constraint is now 10 ® g's, but future plans (Ref 20) include
a nano-g (107° g) performance specification.

Item (3) concerns the measurement bandwidth which is
implied by the need to observe the test environment for
disturbances lasting 100 second periods to the full test
cycle of 120 days. Appendix B shows this basic derivation.
CIGTF presently has a goal of 390 days. The SSP bandwidth
requirement matches the lower limit but exceeds the CSDL

item (3) specification in order to remove existing ground

13



motions above 10 ° Hz to 20 Hz; 20 Hz and above is auqmented
with the passive 1solation system.

The sources and characteristics of seismic disturbances
are next discussed to understand the source of acceleration

and tilt vibrations.

Environmental Disturbances

The SSP passive isolation system and an active control
system together must remove translational and rotational
disturbances detrimental to inertial instrument evaluation.
Until the possible disturbance mechanisms and physical
strengths (magnitude excursions) are understood, the control
issues in relation to design specification are not clear.

Seismic disturbances arise from distant earthquakes,
micro-seismic waves, cultural noise, low frequency tilt,
acoustical noise, test environment temperature changes,
and stray electro-magnetic fields (Ref 15:5).

Earthquakes can induce accelerations typically on
the order of 1.6 X 10 ¢ g at 0.2 Hz and surface waves of
0.4 inches displacement at 0.05 Hz and 100 X 10 ¢ g {(Ref 15:5).
Micro-seismic waves, or microseisms are minute waves that
continually move through the surface of the Earth and are
caused by weather fronts and ocean waves. The most prominent
and important microseisms are at frequencies 0.14 Hz to
0.25 Hz with accelerations of 0.8 X 10 ¢ g to 6 X 10 ¢ g

with amplitudes from 400 to 1000 micro inches (Ref 15:4).

14



Cultural noise is a manmade disturbance caused from
vehicle traffic, aircraft, rocket sled tracks and mechanical
machinery such as air compressors and air conditioners.
Cultural noise typically peaks at 29 Hz and 59 Hz with
acceleration of 10 % g (Ref 11:10).

Low-frequency tilts may be caused from building
temperature distortions in a predominately northerly
direction (northern hemisphere) of about 20 arcseconds with
seasonal variations of 90 arcseconds. This temperature
distortion can occur at rates of 34 X 107% meru (Ref 15:2).

Acoustic wavefronts within the test area can cause
low-frequency motions much like barometric variations
caused by weather effects and sonic noises caused by jet
aircraft. 1In a test environment, pressure and temperature
are usually monitored and controlled; but their effects are
very critical in the operation of seismometers as well as
any gradients across structures like the SSP.

Electromagnetic fields can cause small torque disturbances.
These field intensities also may induce very low frequency
signal noise effects into sensor measurements through
voltages induced in cabling directly or indirectly through
ground loops in instrument amplifiers or A/D converters.

Seismometer theory is not addressed in this study
since perfect system knowledge is assumed, but the disturbance
characterizations just mentioned for various phenomena have

one significant dilemma. All the disturbances typified are
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using measurement technology that cannot approach periods
of longer than 1000 seconds (10" % Hz) and the required
10 ® g's sensitivity (Ref 8). Projected future test platform
bandwidths for inertial testing require 90 day (10 8 Hz)
test cycles or periods. Measurement considerations have been
detailed in several reports (Ref 14:10-11; 20:15-19; 22),
but inertial testing needs to rely on parameter estimation
techniques (Ref 12) and the hope of future seismic instru-
mentation technology.

Another problem unique to the SSP is vertical leveling
of the four support points for the upper and lower masses
or levels. A problem arises in getting all four isolators
adjusted to level each corner of the SSP structure (Ref 2).
Each isolator has a mechanical limit switch preadjusted to
keep isolator height constant under load variations. 1In
a four point suspension, Management Analysis Corporation
(MAC) feared that one isolator would be above or below the
nominal plane for a given level, and the affected level
would warble or tip; similar to the problem of cutting a
chair's four legs to the same length. A three point
suspension avoids this tipping phenomena, so the South and
East isolator for each stage have their air supply requlated
by only one stage limit switch. The dynamics and controller
analysis account for this characteristic. With problem
requirements outlined, the SSP dynamics model is now

developed.
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III. Dynamics Analysis

Introduction

The SSP dynamics are described by linearized differ-
ential equations using force and angular momentum relation-
ships. A full six degree of freedom development - three
translational and three rotational modes, considers perturbed
states of the upper and lower level, and pier subsystems.

The perturbed states are described about a nominal
coordinate frame for each of the three bodies for the six
degrees of freedom. Each coordinate frame uses a unique
subscript notation to identify clearly the SSP dynamics
derived from a lumped spring/damper network model. Once
the representative equations of motion are obtained,
translational and rotational cross coupling terms are
identified. Before the analysis begins, a coordinate
frame is defined for each SSP structure along with

variables describing each structure's motion.

SSP Coordinate Frames

Before even a simple mass spring system can be analyzed,
all coordinate frames, variables and references must be defined.
With the SSP dynamics, naming conventions are particularly
important because the resulting complex differential

equations exhibit forms common to much simpler mechanical

17




|

models. Also, validity checks on the equations are much
casier to relate physically to the SSP.

A body coordinate frame is fixed to the upper level
(U}, lower level (L) and the pier (P). Figure 3.1 shows
the body frames and their orientation. A right-handed
unit vector is defined by G; = 1), X 0: for the upper level
and similarly for the lower and pier frames. Notice at
u, , i; , and p, are oriented in the navigational North
sense, in the nominal position. Additionally, a nominal
state is assigned with u; , i3 and 53 oriented along the
local vertical é3. The e frame, the Earth frame, is taken
as inertial.

Rotation angles in each frame are as shown, with

2

e, and €, respectively for the upper level body. The lower

a ! ¢u and Ou for rotations about the Earth frame él,
level and pier rotations are defined similarly. Appendix

C details the direction cosine transformation matrices
necessary to express position and velocity vectors in the
respective body frames to the Earth frame. The transformation
matrices are derived using small angle, first order
approximations as verified by Likins (Ref 10:102). Such
approximations assume the SSP oriented in a nominal state

and perturbed in small angular motions about the respective
centers of mass.

To understand the importance of the direction cosine

transformation and to gain the insight necessary to write the

18




Figure 3.1

SSP Body Frames
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full six degree equations of motion, the motion of a
single typical corner of the SSP is analyzed for a small

perturbation about a nominal orientation.

Corner Perturbation Derivative

The perturbed state of a body corner or isolator
suspension point is derived in Appendix D. Details of
derivation relate translational and rotational modes can be
more clearly understood from Figure D.l1. The vector notation
UE, which is a position vector in Earth frame relating to
the upper level (U), easterly (E) corner, is used extensively
to write the equations of motion. Similarly ﬁ% means the
time derivative, Earth frame.

Now the isolator suspension points are defined in matrix
notation; the pneumatic isolator characteristics are

related in vector components.

Isolator Lumped Parameters

Before the SSP equations of motion can be written,
the pneumatic isolator is represented by a directional
lumped spring/damper network or conceptually as spring/
damper matrices.

According to studies by MAC (Ref 14:C-10), the pneumatic
isolator has nearly the same resiliency in the vertical and

two horizontal axes for small load deflections. Essentially,
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the isolator is depicted as in Figure 3.2, Isolator Model.
Notice the symbology used as well as the matrix notation.

For example,

cFX 0 0
cp = |0 oy O [g] (3-1)
{0 0 Cpg

implies a matrix damper (C) for the first state isolation
(F) . The matrix then is expressed in Earth (e) unit vectors,
with Cpx meaning first stage isolation, X or e; direction.
Likewise K would be a matrix spring. The isolator charac-
teristics are expressed in Earth frame components without
direction cosine transformation. This assumption is made
because vertical characteristics are due mainly to the
pneumatic isolator itself, with horizontal characteristics
due mainly to the isolator seal (elastomer diaphragm)
stiffness (Ref 14:C-10). Since the perturbation of the
isolator would not reorientate these characteristics
appreciably, no matrix transformation is done. Vector
spring and damper effects of the relative subsystems'

displacement and velocity accounts for any compensation

in isolator dynamics orientation.
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The Barry Controls AL-133-12 Serva-Levl pneumatic
isolator characteristics have been studied by MAC (Ref 14:C-53).
Essentially the vertical characteristics are a function
of the individual isolator's load and air supply, MAC
determined the vertical natural frequency (fVN) to be
1.8 Hz. From the same report, the horizontal natural
frequency (fHN) is 4.0 Hz and 3.8 Hz for the upper and
lower level isolators, respectively. Each isolator axis
represents a second order system, comprised of a single
mass, spring and damper shown in Fiqure 3.3. The differential
equation, using Laplace operator, zero initial conditions,

is

ms? X(s) = -csX(s) - kX(s) + F(s) (3-2)
X(s) = + 1/m (3-3)
F(s)

=1

The denominator of Eq 3-3 is in a classical second
order form or in generalized function of natural frequency
(wN) and damping ratio (g).

2

s° + 2Lw + w? (3-4)

N® N
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Figure 3.3
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single Mass, Spring and Damper
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Equalling like order coefficients of Eq 3-3 to Eq 3-4,

the following relations are implied:

= & -
2t;wN = o {3~-5)
c = ZCwNm wy = 2nf (3-6)
f, frequency in hertz
c = 4dngfm (3-7)
also
2 . k
“N T m (3-8)
k = wsz (3-9)
k = (2mf)°%m (3-10)

Using these
frequencies, the
coefficients are

upper level mass

relationships and the MAC derived natural
second stage isolator spring and damper
calculated using one fourth (four isolators) the

(Ref14:C-53):

f = 1.842z Ioad = 4 = 132.56 lb-sec?
VN nb/ —‘——f‘E—'
(3-11)
where
M, = 530.22 lb-sec?

ft
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ksZ = 16955.12 1b/ft
c = 89.95 1b-sec
Sz ~ft
fVH = 4.0 Hz (3-12)
KSX = 83728.99 1b/ft
\
C = 199.89 1lb-sec
§X 5t

Appendix E summarizes all the lumped spring and damper
parameters used in this study. References are given to
appropriate pages in MAC study (Ref 14) which give further
details and derivations.

Now the subsystem coordinate frames and dynamical
characteristics are described using matrix notation generic

to the SSP.

SSP Equations of Motion - Six Degrees of Freedom

The SSP has six degrees of freedom - three translational
(é,, &,, &;) and three rotational (y, 0, ¢) for three
bodies or structures ~ the upper level (U), lower level (1)
and pier (P). An eguation is written for each corner (such

as UE, UN, UW, US) of each body. Then each equation is
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resolved into Earth components and the translational
and rotation effects segregated,

A lumper parameter model for the SSP is
shown in Figure 3.4. Various levels of isolation are
indicated for the so0il or ground (3) isolation, first
stage pneumatic isolators (F) and second stage pneumatic
isolators (S) using the matrix spring and damper concepts.
The spring and damper characteristics are expressed in
€ unit vectors, but the spring and damper end points are
vector points. For example, IE and UE have Ks and CS
connecting them. TE, LN, IW, LS all are points in the plane
representing the lower level steel-boxed ring. Similarly
the upper level platform and pier seismic block are
described.

From basic spring and damper dynamics for one dimension,
the following equations result for the spring (FS) and

damper (FC) forces.

F = kx (3-13)

where
%, spring displacement
k, spring constant

in vector case, using column vectors
F = [Ks] x (3-14)
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N

S
v ]
x I
F
y
F
L VA
kSX 0 0
0 kSY 0
0 0 kSZ
k
SX 0 0
0 ksY 0
t0 0 kSZ

>

%1

(3-15)

(3-16)

(3-17)

The form of Eg 3-14 is chosen to make algebraic

manipulation easier.

The equations for the damper in scalar and vector case

are

where,

(-]
%, damper velocity

c, damping coefficient

29
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F = [cgl X (3-19)

— [ 1 Q9 [ o 1 r ]
Fc = FX ' X = X CSX 0 0
[+
Fy y CS =]0 Cgy 0
F z 0o 0 c
L 2 J L b - SZJ
r 1 - 1 1
[+]
FX cSX 0 0 CSXX
Lo [
FY = 0 Cgqy 0 X = CSYY (3-20)
o
FZ 0 0 CSZ CSZZ
L j ]

Again Eq 3-19 is written in a form to simplify
equations later in development. The displacement vector
x and velocity vector i concept can easily be written using
UE and ﬁ% notation by writing components as column vectors
in the e¢ frame. Egs D-6, D-10, in Appendix D, show UE
and iﬁi in vector notation.

Extending the above dynamic force vectors, F = ma
can be written for the SSP from Figure 3.4. The SSP is a
constant mass system. Newton's Second Law concerns the
inertial center of mass acceleration of each body as%f,
f?and %)for the upper level, lower level and pier,

respectively.
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Summing the forces on each body due to isolator
spring/damper equivalents and active controller actuators,
results in the following equations. For the upper level,

the summing forces yields,

Qo —Q_ ~Q_ E
mUU = CS(LE - UE}) + KS(L - UE)
o 0. —
+CS(LN - ON) + KS(LN - UN)
- _o._ — ——
+C (LW - TW)  + K (LW - UW)
- _o - v
+C (LS - US) + R (LS - US)
* Fyp * Fun * Fyw * Fus (3-21)
Where FUE ’ FUN ’ FUw and FUS are the four active

controller actuators between the upper level and pier.

Similarly, the lower level equations are as follows,

2o e e
mLL = "Cs (LE - UE) - KS (LE - UE)
2. 9
"'CS (LN - UN) - KS (LN - UN)
2. 9
—CS(LW - UW) - K_ (LW - UW)
S
o e —_ —
—CS(LS - Us) - KS(LS -~ Us)
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ﬁL —
+CF( E - LE) - KF(PE - LE)
—a_ o — —
+CF(PN - LN) - KF(PN - LN)
-2 _°o P
+CF(PW - W) - KF(PW - LW)
L o —_—
+CF(PS - LS) - KF( S - LS) (3-22)

Likewise, the pier force equations are as follows:

9§9 _ _I-)Q— < —_ —
mP = —CF( E - LE) - KF(PE - LE)
- _0_ ——
—CF(PN - LN) - KF(PN -~ LN)
-9 -9 I —_
—CF(PW - LW) - KF(PW - LW)
S < —_—
—CF(PS - LS) - KF(PS - LS)
o o —
+CG(GE -~ PE) - KG(GE - PE)
o, _o —_—
+CG(GN - PN) - K_.(GN - PN)
G
S o < T —_— _—
+CG(GW - PW) - K.(GW - PW)
G
0 _ —0_ ——
+CG(GS - PS) - KG(GS - PS)
= Fpg = Fpy ~ Fpy ~ Fpg (3-23)
Notice that the -F -F ~F and -F__. forces

PE ' PN ' PW PS

result from the four active controller actuators being
connected between the upper level corners and the pier

foundations.
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Appendix F manipulates Egs 3-21, 3-~22 and 3-23
into differential equations for the e components of each
body acceleration and applied dynamic forces. Appendix F
yields the differential equations describing the three degrees
of translational for the SSP. Although rotational terms
are present, two important points are made. First, for
small angular movements the rotational terms certainly
aid translational positions and velocities, as a quick
units check verifies. Secondly, if the SSP isolator
placement is theoretically symmetrical, all rotation
contributions vanish, which is physically reassuring showing
that the equations are correct. Now the three degrees of
rotational freedom are investigated to complete the dynamics
description of the SSP.

Rotational equations of motions of the three bodies -
upper level, lower level and pier, result from summing
moments about each body center of mass and examining
the resultant angular accelerations. Expressed more
formally, the rotational equivalent of Newton's Second Law
is M = T (Ref 10:438), where M is the moment vector
about the body center mass and ﬁ is the time derivative in
aﬁ inertial frame of the vector angular momentum, H.

The angular momentum and its derivative are expanded
to show the mathematical relationship to the body moments

of the SSP. Angular momentum is written as
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where,

2l

o+ Ja of

=

i
Xlo

angular momentum
time derivative,

body moments

inertial frame

(3-24)

The relationship is derived for the upper body as,

where,

2o}

el

I

).

, moment of inertia matrix

, angular velocity vector

[
Tyx 0
= 0 Tuy
0 0
, I, , I

uy Uz

are body noments of

inertia about u; , u; , u; axes.
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¢, 5 are tilt rates defined in Appendix C.




B, = Iy 0 0 v, (3-28)
0 IUY 0 du;
0 0 T 0us
Uz
J J
HU IUqul + IUY¢UQ + IUZOUE (3-29)

The components of the upper level moment matrix are

written as,

M = M., u: + MUYU2 4+ M (SR ({3-30)

where,

ux ¢ Mgy + Myg are moments about a; , a2

and u; axes.

Equating components in u frame, and transforming to e
frame using small angle, first order approximations derived
in Appendix C, the upper level moments relate to angular

accelerations as,

o o

Myghr = Igebyta = [Tgeby = 00y (Iyy - Iygllen
(3-31)

~ o 0o o o -
MoOa = Tgyoule = [Tyt = Oyby (Iy, - Igg)lé:
(3-32)

~ o0 ’~ [-3] (-] o A
Mygis = IypOuis = [Ty0y = ¥ydy Oy - Igylles
(3~33)
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Egqs 3-31, 3-32, and 3-33 are known as Euler's equations
(Ref 10:439) 5ng may be reduced further using small angle,

first order approximations to

Mgl = Tyl s (3-30)
Myls = Tyydpe: (3-35)
M0 = T, 0,6 (3-36)

Using similar transformations and approximations, the

lower level is described as

~ oo

MLX11 = ILXPLél (3-37)
~ oo &

MLY12 ILY¢L 2 (3-38)
~ oo

MLZ13 = ILZOLe3 (3-39)

and for the pier subsystem,

00

My f1 = I, hpe (3-40)
1]

MPYpZ = IPY¢Pe2 ( 3_41)
oo

My, By = I,,0,8 (3-42)
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Now the body moments are related to the angular
acceleration and moment inertia. The rotation equations
are written as vectors for each body and respective
isolator and actuator dynamics. A moment is easily

described in the scalar case as

M = rF {3-43)

where,
M, moment
r, radial action arm

F, the applied force

For the vector case, consider a x, y, z cartesian

coordinate frame, with Ty in the X direction, FZ applied

in positive Z and M, a clockwise moment about the Y axis.

In cross product notation this reduces to

~

M = rXF = —erZy (3-44)

The minus sign indicates a clockwise moment for the

example. Now consider the east corner of the upper level
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(UE) and the lumped parameter vector damper force
[(1IE - GE]TCS . Using the concept of Eq3-19, the damper

force in the e frame.

_o_ -
CS[LE - UE] = Csx( xL - )i])él > Aeé,
+CSY(YL - YU + lLE L lUEOU)ez Bé,
[+] o -3 [+] N > N
tCgpl2y = By T Lygty * yg0y)és Ces
( 3-45)
The moment arm of the isolator on corner UE is
UE = (¥ + Lglér + (Y + 4,,8,)8&
(5, - Lypdyes
(3-46)

Since the dynamics analysis is to be a linear model,
the moment arm in Eg 3-46 reduces to {Hzél . Use of the
other terms would include variable products and their
derivatives due to the cross product operation. From a
physical standpoint, under small angle approximations
and perturbations about a nominal body position, such
non-linear product terms would be neglectable.

To find the moment offered by the UE damper, the cross

product is done as
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&

M = [y 1) X Cc ILE - UE] (3-47)

CS
&, €, &;
Meg = | lyg 0 O
A B C
= oypce. + e (3-49)

The indicated operations in Eq 3-48 result in the

components of MCS as

. ° ° o o .
Mes = UCgzlyr?r * Csalurf * Cszluelier ~ Csalyglue ) @2

[ (=] [+ (-]
HegylyeYrn 7 Ssylue% T Ssywelie®r T Ssylue %) és

The first two terms in the &, and &; components
represent the translation cross coupling terms and the last
two in each component are the pure rotation contributions.
Appendix G carries out the cross product process similar
to Eq 3-48 for all SSP subsystem corners and gives the

rotational differential equations. As is done in Appendix

F, the eguations are separated into the &, , &, and &; degrees

of freedom with the cross coupling term indicated.
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Summary

The differential equations developed in Chapter IIT
and tabulated in Appendix F - Translation and Appendix
G - Rotation are the linearized differential equations
describing the upper, lower and pier level perturbed
motions. These motions are for a constant mass system
about a nominal position in each body's center of mass.

No acceleration terms due to gravity are present, because
the variance of gravity is small and the nominal
orientation is an equilibrium state where all gravity
forces, isolator forces, and actuator forces result in
the nominal position.

Close examination of the translational differential
equations in Appendix F clearly show the X and Y directions
to have O cross coupling terms. The 2 direction has cross
coupling terms from ¢ and Y. These observations hold for
all three levels and is a physical check of the described
motions.

Similarly, Appendix G shows the rotation differential
equations for each level to have cross coupling present.
The y and ¢ have Z cross coupling influences and O has X
and Y cross coupling components.

Chapter IV evaluates the passive response using Laplace
operator solutions of the SSP differential equations in
the frequency domain. Chapter V converts the SSP differential

equations into state space notation for time response analysis
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using LQ synthesis. The next chapter highlights the
SSP passive response to gain insight into the actual
controller problem analysis in Chapter V.

The dynamics equations written for the SSP give
insight to the "leveling problem" for adjusting isolator
height. A nominal position would imply that height of
the isolators would already place a level in equilibrium.
For the study, a nominal position is assumed and the
isolators adjusted or leveled. The differential equations
in Appendix F and G could be analyzed in terms of each
corner relative to the level center of mass to describe

any "leveling" induced motion.
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IV. SSP Passive Response

Introduction

Before designing an active controller, the SSP passive
response is analyzed to identify resonant frequencies and
their effects on magnitude and phase responses. On the
basis of the passive response characteristics, the
systems poles and zeros then give possible insight for
reduced order approximations in Chapter V, SSP Active
Controller Design.

Simple mass, spring and damper networks are investigated
and their characteristic Laplace solutions are related
to the differential dynamic equations resulting from Chapter
IIT.

Once the vibration transmissibility concept is
developed, the lumped spring and damper parameters are
entered into the transmissibility expressions for each of
the six degrees of freedom to obtain the system passive
response with the controller actuators deactivated. Various
isolation levels are modeled to identify dominant SSP
dynamics and possibly explain passive responses actually
measured by CTGIF.

Before the simple mechanical models are studied,

analysis assumptions and methods are presented.
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Analysis Method and Assumptions

The passive analysis implies no controller actuator
forces and represents the SSP system open loop transfer
function. For the passive response, the SSP symmetry
cancels any translation or rotation coupling, since all
isolators are equidistant from the body centers of mass.

In Chapter III, Dynamics Analysis, the pier center
of mass is assumed in the plane of the lower level isolators.
The pier is modeled as a plane having a lumped parameter
for inertia about the Z direction (és) with equivalent
spring and damper matrices representing soil dynamics in
the vertical direction on each corner. Another simplifica-
tion is also made for the moment of inertia in the (éz)
direction by using the same lumped parameter given for the
X(é,) direction. Spring and damper matrices in the two
horizontal directions - North and South, East and West - are
equated to the values calculated for the X(e,) direction.
These pier simplifications basically consider the X and Y
translation dynamics as well as the § and ¢ rotation dynamics
the same. 1In contrast, the pier simplifications are made by
assumption for analysis convenience, while the upper and
loﬁer level dynamics are the same for X, Y and ¢y, ¢ directions
by symmetry. The pier simplifications are detailed in
Appendix E and do not impact on active controller design
because measured pier effects are above controller bandwidth
at 200 Hz (Ref 19). To standardize the dynamics qualitatively,
the transmissibility concept is defined next.
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Transmissibility is in general a transfer function or
ratio between input and output vibrations or displacements
(Ref 17:16). Expressed in the frequency domain, transmissi-

bility is written as a transfer function

Xo(jw) (4
-1)

T(jw) =
x1 (jw)

where, as functions of frequency
Xo (jw), output

X1 (jw), input

T(jw) , transmissibility transfer function

Transmissibility logarithmic magnitude and phase

angle for Bode plot representation are written as

X0 (Jw)
LmT(jw) = 20 log dB (4-2a)
x1 (Jw)
T(jw) = tan ? IRIT(Jw)] (4-2b)
Re [T (jw)]
where,

LmT (jw), log magnitude, base 10, decibels

T(jw), phase angle, degrees

Im, Re , 1imaginary, real part rectangular components.
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Vibration transmissibilities (Ref 17:16) can represent
displacement responses, but also velocity and acceleration.
By assuming T(jw) to be a linear transfer function and
sinusoid velocity or acceleration inputs, the displacement
derivative responses are easily obtained. This assumption
is commonly made in seismology studies for low frequency
Earth movements which are naturally free of high frequency
components (Ref 17:16). For the SSP, the acceleration
transmissibility responses are needed for the translation
passive responses and are easily implied from displacement
transfer functions. The SSP rotational passive response !
is obtained directly from the anqular position of tilt
transmissibilities. Once transmissibility transfer functions
are computed for the six SSP degrees of freedom, probable
acceleration (by_approximation) and tilt responses are
available.

Transmissibility magnitude Bode plots are also a
convenient representation of power spectral density (PSD).
Mathematically the two are related as
X0 (§2)]2 Xo (jw)

20 log
x1(3.) x1 (Jw)

PSD{(jw) = 10 log

(4-3) 1
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The acceleration SSP specification for all axes is a
PSD requirement in terms of root mean square (RMS). Accelera-
tion RMS calculations are not made because of available
computer software, so only peak transmissibility values are

considered.

Simple Three Mass, Spring and Damper Networks

A simple three mass network shown in Figure 4.1 offers
considerable insight into the transmissibility differential
equation solution of more complex networks such as the SSP.

From Figure 4.1, the one degree of freedom, Z trans-
lational differential equations can be written for the
three masses using F = ma. All accelerations are inertial-
Earth frame with all masses constant. A displacement input
2. 1s assumed as shown. The equations of motion for the

G

three masses are

mUzU = cS(zL - zU) + ks(zL - zU) (4-4)
00 o o
mez; = —cs(zL - zU) - ks(zL - zU)
] o
+cF(zP - zL) + kF(zP - zL) (4-5)
[-1-3 [+] o
mpzp = ~Cplzp - zp) - Kplzp - zp)
-] [+ 4 6
+cG(zG - zp) + kG(zG - zP) {4-6)
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U
kg s
m; 2y,
kg Cr
mP zP
kG kG
| - | zG
m; , upper mass
m o lower mass
my pier or seismic mass
kS’ Cg second stage isolation
kF' Cp first stage isolation
kG, S ground isolation

Figure 4.1 Simple

Three Mass Network
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Eqs (4-4), (4-5) and (4-6) are rearranged and written

in Laplace notation, assuming zero initial conditions.
2 = -
4}‘5)[“bs + Ccgs 4 kss] = Z;(s)lcgs + kgl (4-7)

zL(s)[mLs2 + (cF + cs)s + (kF + kS)] = zPs[ch + kF]

+ ZU(s)[ch + ks] (4-8)

2
ZP(s)[mPs + (c

> + cF)s + (kG + kF)]

ZG(s)[ch + kG] + ZL(s)[ch + kF)] (4-9)

Egs (4-7), (4-8) and (4-9) are rewritten with variables
representing the bracketed terms in preparation for algebraic

manipulations; these equations follow term for term below:

z,(s)lal = 2,(s)(b) (4-10)
z (s)le] = zp(s)lc] + 7 (s)la] (4-11)
ZP(S)[f] = 4;(5)[g] + ZL(S)[h] (4-12)

Solving these expressions for the transmissability %J(s)/

Q;(s), the transfer function is
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ZU(S) - bcg

(4-13)
ZG(s) aef - b?f - c?a
which is the basic form
ZU(s) - (cS + ks)(ch + kF)(ch + kG)
Zg (s) (Mg ee) (myon) (mp e o) = (eos + ks)z(mp...)
_ 2

(ch + kF) (mU...)

(4-14)

Egq 4-13 with the indicated operations carried out

to obtain a ratio of polynomials, becomes a transfer function

of the following form,

Z2y;(8) . aAs? + Bs? + Cs + D

ZG(s) Es® + Fs® + Gs" + Hs® + Is?2 + Js + K

(4-15)

The polynomial coefficients of Eq 4-15, A thru F are tabulated
in Appendix H in terms of the variables for this simple
system once the spring, damper and mass variables are
spécified.

Now that a scalar Z transmissibility transfer function
solution is available in Eq 4-15, the translation equations

of Chapter III and Appendix F are reexamined. Eq 4-4 is
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repeated again in differential equation form (terms

collected} .
[ele] o o
myzy = ~CgZy - kSZU + cgzy + kszL (4-16)

Now consider the mU component of ég in Eq F-11,

no rotation coupling terms, and actuator forces zero.

z_ + 4kszz (4-17)

L

The scalar development oZ three mass networks represented
in Eq 4-16 characterizes the forms given in Appendix F.
Namely, the simple Cg second stage damper parallels the SSP
second stage by a factor of four, which is physically
reassuring, since the SSP second stage has four isolators.
Extended further, Appendix H gives the solution for three

stages of isolation, no rotational coupling, no active

control actuvator forces by the simple substitution:

4cSZ -+ Cq (4-18a)
4ksz > L (4-18b)
dcp, Cp (4~-18c)
4kFZ > kg (4-184)
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4CGZ > Cq (4-18e)

4kGZ > kG (4-18f)
The same parallel differential equation structures
exist for the &, direction in Egs F-5, F-6, and F-7.
Similarly, the &, direction has the same solution form by

using Egqs F-8, F-9 and F-10.

For the rotational differential equations developed
in Appendix G, the parallel solution can be extended again.

Eq 4-16 is repeated.

00 o [+
my2Zy = ~CgZy " kszU + Cg2p, + kszL (4-16)

If Eq G~9, the I component of Ois rewritten with

Uz

Cgx = Cgy and all isolator lengths lUN = lUS = IUW =1,

because of symmetry, the following rotational equation

results.
o0 20 . 2
IUZGU = —4csxl OU - 4ksxl @U (4-19)
[+]
2 2
+4cSXl @L + 4ksxl OU

Now a solution for the 2 direction is readily available

by simple substitution.
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IUZ > my (4-20a)
4csxl2 > Ccg (4-20b)
4kSX12 N ks (4-20c)
4cFX12 > cp (4-204)
4kFXl2 > kF (4-20e)
4CGX12 > Cg (4-20F)
4kGX12 > kg (4-209g)

Physically this follows from the SSP dynamics because

the Cgx 7 ksx » Cgy and kSY vector springs and dampers act

as four individual components about the é; axis for 0 in
the upper level rotational dynamics. Similar analogies
can be made for the lower level and first stage isolation
effects.

These substitutions do not hold for ¢ and ¢ . The

IUX component of y , Eq G-7 is rewritten using the same

assumptions used in IUZ .

o0 [+
_ - 2 - 2
Iyx¥y = ~2¢g51%0y 2kgy17v

[+

2 2
+20g, 120+ 2kg, 1%y

U

(4-21)
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The ¢ substitution becomes:

IUX > My (4-22a)
2cszl2 .+ Cg (4-22b)
2kszl2 > kg (4-22¢)
2c,,1* | cp (4-224)
21ch12 . kg (4-22e)
2cg,1? | g (4-22f)
21<Gzl2 . kg (4-229)

The rotational spring and damper equivalents are halved

because the Cgy and kSZ dynamics act in pairs on opposite
corners in a see-saw fashion about é&; for ¢ and &, for ¢

in the upper level. Similar comparisons can be made for the
lower level and pier rotational equations.

Deriving the Egs 4-7 through 4-16 is only a vehicle
for solving the three mass isolation networks. The parallel
made between Egs 4-16 and 4-17 gives very realistic insight
into solving the &, equationé found in Appendix F. When
the 0, ¢y and ¢ differential equation coefficient substitu-
tions are made, these scalar variables become rotational

springs and dampers and the 2 notation of Eq 4-16 represents

just a scalar variable, with no translation implications.
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SSP Full Isolation

With the insight and substitutions gained from three
simple mass, spring and damper networks, the SSP full
isolation offered in the X(&,), Y(é&;) and Z(&;) translation
directions as well as the y(&;), ¢(&;) and 0(&;) are
evaluated. The transmissibility concept will provide
transfer functions in the required directions using the
physical spring and damper values in Appendix E, the
polynomial solution in Appendix H and the substitutions
just derived by the simple mechanical network analysis.

Each transmissibility is defined in the frequency

domain from the solution polynomial and expressed in a factored

form and a Bode plot from TOTAL (Ref 9). Actual polynomial
coefficients are listed in Appendix I. Table 4.1 summarizes
break frequencies, phase margins, gain margins and general
low pass attenuation offered. An expression for each

SSP directional transmissibility is now listed along with

an accompanying plot reference.

Z-Response (Full Isolation)

T2y ,6(3w) = Zy(3w) /2g(3w)
= 223.3(ju + 128.5) (jw + 188.5)2
(o + 0.1882 *+ §8.421)
X (jw + 1.715 + j25.37)
X (jw + 86.47 + j121.4) (4-23)

Bode plot is shown in Figure 4.2.
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B S

X-Response (Full Isolation) (also Y~Response)

XU(jw)/XG(jm) = Y, 3w) /Y, (Gw)

606.8(jw + 199.6) (jw + 397.9) (jw + 418.9)

(jw + 0.4080 * 318.21)

X (juw + 3.718 + 354.94)

X {(jw + 50.17 + §132.5)

TXU/G(jw)

it

(4-24)

Bode plot is shown in Figure 4.3.

Theta-Response (Full iIsolation)

GU(jm)/OG(jw)

(jw)
(886.4 (Fu + 199.6) (jw + 397.9) (ju + 418.9)

TOy/c

(jw + 0.8367 + 3126.07)
§78.52)
t §81.78)

-+

X (jw + 15.65
X (jw + 8.684

Bode plot is shown in Figure 4.4.

PSI-Response {(Full Isolation) {also PHI Response)

TwU/G(jw) wU(jm)/wG(jw) ¢U(jw)/¢G(jw)

590.1(jw + 128.5) {jw + 188.5)°?

(Jw + 0.42 ¢ j12.57)

X (jw + 4.159 t §39.37)

X (Jo + 42.23 t j95.24) (4-26)

Bode plot is shown in Figure 4.5.
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Full Isolation Analysis

The theoretical magnitude and phase plots are plotted
using Egs 4-2a and 4-2b respectively. Tabulated values for
Table 4.1 are obtained from TOTAL to the indicated magnitude,
and frequency resolutions. Analysis conclusions are stated
now for each direction.

The full Z isolation position resonances are theoretically
at 1.3 Hz and 4.0 Hz which compares closely with the vertical
acceleration resonances at 1.2 Hz and 3.5 Hz measured by
FSJRL engineers {(Ref 19). A phase shift is at 2.0 Hz with
a measured 180° phase shift at about 1.0 Hz measured at CIGTF
(Ref 19). These good correlations give validity to the SSP
dynamics modeling approach for acceleration transmissibilities.

No measurements are available from CIGTF for X and Y
acceleration transmissibilities. Figure 4.3 predicts the
X transmissibility as well as the Y transmissibility due to
the symmetry of lumped spring and damper dynamic matrices.
Theoretical horizontal position resonances are at 2.9 Hz and
8.6 Hz.

The O direction has azimuth resonances predicted at 4.1 Hz
and 12.0 Hz but no measurements are available. Transmissi-
bilities for ¥ and ¢ are the same due to symmetry with
resonances predicted at 2.0 Hz and 12.0 Hz. No tilt trans-
missibility measurements are available for the SSP. The 0O
direction has a small gain margin and phase margin while the
¢y direction has gain and phase margins comparable to the Z and
X directions. Table 4.1 summarizes these points. No input
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signal magnitudes are specified because the transfer
function is calculated for a normalized response.

Time response characteristics from TOTAL resulting from a
unit step input are given in Table 4.2 for all full isolation
transmissiblity functions. These time responses only emphasize
the lightly damped dynamics of the SSP. Unit step responses
specify no input magnitude since they also can be scaled or

normalized for a linear system

Simple Two Mass, Spring and Damper Network

Similar to the three mass solutions just derived for
the full isolation transmissibility transfer function, a two
mass system is analyzed. Two mass, spring and damper models
characterize transmissibilities result from the three SSP
levels of isrlation in active isolation combination two at
a time. In actual operation, the SSP could have one level
of pneumatic inoperative or the SSP dynamics could be evaluated
neglecting the pier isolation. The possible scalar combinations
for the 2 direction are shown in Figure 4.5. Again, the
whole driving force behind the scalar development is to
characterize the differential equations, use the substitutions
recognized in Egs 4-18, 4-20, and 4-22, and offer solutions
for the needed transmissibility transfer function. The
scalar Z is used because it is easier to visualize without
complex free body diagrams and it parallels easily into

the SSP Z direction solution.
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Figure 4.

6A SSP Isolation
:U “L
L
kF Cp
Tp
kg ‘G

Figure 4.6B First Stage/Pier Isolation
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Figure 4.6C

m_ , upper mass
m_ , lower mass

m_ , plier or seismic mass

c., , second stage isolation
c., , first stage isolation

c. , ground isolation

Second Stage/Pier Isolation
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SSP Isolation

Figure 4.6A shows no pier dynamics or just the SSP
structure upper and lower levels. The F = ma differential

equations for the two masses are

(1] o [~}
mUzU = cS(zL - zU) + ks(zL - zU) (4-27)
(1] [+] (-]
mLzL = CF(zP - zL) + kF(zP - zL)
o [
-cs(zL - zU) - ks(zL - zU) (4-28)

Rearranging Eqs 4-27 and 4-~28 and using the Laplace
operator, zero initial conditions, and some algebraic

manipulation, the transmissability function becomes

Zy(s) as®> + bs + ¢ (4-29)
ds" + es® + fs?2 + gs + h

ZP(S)

where the numerator and denominator polynomial coefficients

are

a = cpcg (4-30a)
b = chS + cSkF {(4-30b)
c = kaS (4-30c)
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d = mm (4-304)

UL
e = mU(cF + cs) + mLcS (4-30e)
f = mU(kF + kS) + CFCS+ mLkF (4-30f)
g = b (4-30g)
h = ¢ (4-30h)

A solution similar to Appendix H, the full isolation
solution is now available. To solve all four transmissibility
functions - Z, X(or Y), 0 , and y(or¢) substitutions from

Eqs 4-18, 4-20 and 4-22 are used.

First Stage/Pier Isolation

Figure 4.6B shows the second stage isolation inactive.
The configurations have a solution of the form given in
Eq 4-29 with the polynomials described by Eq 4-30. If the
following scalar variable solutions are made, the

transmissibility transfer function is easily obtained.

my + mp > my (4-31a)
my, > m (4-31b)
kF > kS {4-31c)
Cp -> Cg (4-314)
kG -> kF (4-31le)
g -+ Cp (4-311)
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Now the scalar change of variables are transformed,
the same substitutions made in Egs 4-18, 4-20 and 4-22

are used.

Second Stage/Pier Isolation

Figure 4.6C shows the first stage isolation inactive.
The following scalar variable substitutions are made in

the polynomials described in Eq 4-29.

mL + mp -> mL (4-328.)
kG > kF (4-32b)
¢ Cp (4-32c)

As is done in the other configurations, the same
substitutions made in Egs 4-18, 4-20 and 4-22 are used.
Transmissability transfer functions in factored form are
obtained from TOTAL. Polynomial coefficients are listed
in Appendix I. Bode plot references are indicated,
frequency performance data ané unit step time response

information are listed in Tables 4.3 and 4.4, respectively.
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Table 4.3

Dual Isolation Frequency Characteristics Summary

T(jw) GM(f) PM(f) £(MP)

TZU/P(jw) 5.25db( 3.0 Hz) 5.71°(2.0 Hz) 1.3 Hz( 23.57dB)

4.0 Hz (-0 .43dB)

TZL/P(jw) 39.68db(23.0 Hz) 9.42°(2.6 Hz) 1.8 Hz( 24.504B)

22.0 Hz(~-38.93dB)

TZU/P(jw) 38.11db(21.0 Hz) 9.42°(2.6 Hz) 1.8 Hz( 24.50dB)

22.0 Hz(-38.114B})

TXU/P(jm) 5.29db( 6.5 Hz) 5.39°(4.5 Hz) 2.9 Hz( 27.994B)

8.6 Hz(- 0.46dB)

TXL/p(jw) 18.62db(14.0 Hz) 8.90°(5.5 Hz) 3.8 Hz( 24.63dB)

16.0 Hz (-20.244B)

TXy g (3w) 17.464b(14.0 Hz) 8.70°(5.8 Hz) 4.0 Hz( 24.69dB)

20.0 Hz(-22.08dB)

TOU/P(jm) 6.32db( 9.8 Hz) 7.10°(7.0 Hz) 4.2 Hz( 24.304B)

13.0 Hz (-~ 4.56dB)

TOL/P(jw) 0.83db( 8.9 Hz) 4.20°(9.5 Hz) 5.0 Hz( 15.78dB)

‘ 10.0 Hz (-~ 0.714B)

TOU/G(jw) 2.07db( 8.8 Hz) 22.12°(11.0 Hz) 5.7 Hz( 23.21dB)

12.0 Hz (- 1.92d4B)

TwU/P(jw) 6.33db( 4.7 Hz) 8.30°(3.1 Hz) 2.0 Hz( 24.45d4B)

6.1 Hz(- 4.574B)

TwL/P(jw) 20.97db(13.0 Hz) 13.50°(4.0 Hz) 2.7 Hz( 21.04dB)

. 14.0 Hz(-22.99dB)

TwU/G(jw) 21.22db(12.0 Hz) 13.40°(3.9 Hz) 2.7 Hz( 20.994B)

. 13.0 Hz(-22.254dB)
where,

GM, gain margin PM, phase margin MP, magnitude peak

AS, attenuation slope approximate leaving MP, towards
positive increasing frequency

T(jw), transmissability frequency function

(Ref 6:82)
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Z-Response (SSP Isolation)

TZU/P(jw) = ZU(jw)/ZP(ju)

1.292(jw + 188.5)72
(jw + 0.1883 *+ j8.422) (jw + 1.716 * 325.37)

(4~-33)

Bode plot is shown in Figure 4.7.

Z-Response (First Stage/Pier Isolation)

TZL/P(jw) = ZL(jw)/ZG(jw)

117.3(3w + 128.5) (jw + 188.5)
(w + 0.3391 * j11.30) (jw + 86.47 * j121.4)

(4-34)

Bode plot is shown in Figure '4.8.
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RESPONSE (SSP ISOLATION)
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Z - RESPONSE (FIRST STAGE/PIER ISOLATION)
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Z-Response (Second Stage/Pier Isolation)

it

TZU/G(jw) Z2;(3w) /2, (Gw)

= 111.2(jw + 128.5) (jw + 188.5)
(jw + 0.3392 * j§11.30) (jw + 82 * j119.8)

(4-35)

Bode plot is shown in Figure 4.9.

X-Response (SSP Isolation)

i

TXgpGud = X G /X, Gl = Y (3w /Y, (G

It

6.061(jw + 397.9) (jw + 418.9)
(ju + 0.4079 + 3j18.23) (jw + 3.717 + j55.00)

(4-36)

Bode plot shown in Figure 4.10
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Z - RESPONSE (SECOND STAGE/PIER ISOLATION)
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Figure 4.9
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X-Response (First Stage/Pier Isolation)

TXL(jw) = xL(jw)/xp(jz.;) = YL(j(u)/YP(jw)

143.4 (Jw + 199.6) (Jw + 397.9)
(jw + 0.1763 * 3j23.81) (jw + 50.17 + j132.5)

(4-37)

Bode plot shown in Figure 4.11.

X-Response (Second Stage/Pier Isolation)

Xy (3w) = Xgliu) /XgGw) = Yy(3u) /¥g (Su)

= 143.2(jy + 199.6) (jw + 418.9)

(jw + 0.7543 *+ j25.08) (jo + 47.55 * j129.4)

(4-38)

Bode plot is shown in Figure 4.12.
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X - RESPONSE (FIRST STAGE/PIER ISOLATION)
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X-Response
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Theta-Response (SSP Isolation)

TOU/P(jw) = OU(jw)/OP(jA)

= 27.66{(jw + 397.9) (jw + 418.9)
(Jw + 0.8363 £ j26.10) (jw + 8.273 + j81.81)

(4-39)

Bode plot is shown in Figure 4.13.

Theta~Response (First Stage/Pier Isolation)

TOL/P(jw) = OL(jw)/OP(jw)

96.53(jw + 199.6) (jw + 397.9)
(jw + 1.508 * 3j34.50) (jw + 16.06 * j78.57)

(4-40)

Bode plot is shown in Figure 4.14.
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Theta-Response (Second Stage/Pier Isolation)

TO /¢ (30) 0 (3w /0 ()

97.34 (o + 199.6) (jw + 418.9)
(jw + 1.532 # 3§35.71) (Jw + 15.92 + §78.23)

(4-41)

Bode plot is shown in Figure 4.15.

PSI-Response (SSP Isolation)

Toy/p(30) = 95 (30) /9, (3u) = oy (3w) /¢, (3u)

6.99(jw + 188.5)?2
(jw + 0.4201 + j12.58) (jw + 4.160 *+ j39.38)

|

(4-42)

Bode plot is shown in Figure 4.16.
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Figure 4.15 Theta-Response (Second Stage/Pier Isolation)
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PSI-Response (First Stage/Pier Isolation)

Ty p (Gu) Wy (G0 /0, (3s) = by (F0) /9p (Gu)

131.1(jw + 128.5)(j + 188.5)

(jw + 0.7764 * 317.09) (jw + 42.23 % j95.24)

{4-43)

Bode plot is shown in Figure 4.17.

PSI-Response {Second Stage/Pier Isolation

Tyyo o) = byldw) /ig(Ge) = oy (Gw) /g (Gu)

125.2(Jw + 128.5) (jw + 188.5)

(jw + 0.7496 + j16.79) (jw + 41.77 + j94.82)

(4-44)

Bode plot is shown in Figure 4.18.
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Figure 4.17 PSI-Response (First Stage/Pier Isolation)
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Dual Isolation Analysis

Two important results are gained from the analysis of
the dual isolation configurations. First, the SSP isolation
dynamics do dominate the passive transmissibility responses.
Secondly, the small gain and phase margins are directly
attributable to the SSP isolator dynamics.

Table 4.3 summarizes the frequency characteristics for
the dual isolation response. The Z direction is a good example
of the SSP isolation dynamics role. The SSP isolation
dynamics in the 2 direction compare directly to the theoretical
first and second resonant peaks discussed for the Z full
isolation, clearly showing the dominance of the SSP isolation
over the pier dynamics. When the first stage or the second
stage isolation are considered with the pier, the pneumatic
isolator dynamics dominate and compare exactly to the isolator
vertical design frequency in Appendix E. The second resonance
of either isolation stage and the pier dynamics is at 22 Hz.

The SSP isolation configuration in the Z direction has
the same small gain and phase margin as did the full 2
isolation case. Only when oﬂe level of pneumatic isolation
is considered does the gain and phase margin increase as
shown in Table 4.3.

The same SSP isolation dynamics analysis and results
can be extended for the X (or Y), 0 and ¢y (or¢) directions.

A summary of unit step responses from TOTAL for the dual
isolation configurations are presented in Table 4.4. Clearly,
the long settling times and peak overshoots are identified
with the SSP isolation dynamics.
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Simple Single Mass, Spring and Damper Networks

A single mass, spring and damper single level isolation
system is shown in Figure 4.19A. Figures 4.19B through
4.19D show the various SSP single level isolation config-
urations possible using the Z scalar derivations used in
the other simple three and two mass mechanical networks.

The position transmissibility for Figure 4.19A is written

in Laplace operator notation, zero initial conditions:

Zy (S)

_ cs + k (4-45)
Z,(s) ms? + ¢cs + k
Or in the frequency domain, the transmissibility
is written as
Z,(jw) = cjw +k (4-46)

Z1(jw) mjw? + cj + k

The transmissibilities for the various single levels
are solved by substituting the active SSP isolation level
spring and damper for k and c respectively. The mass, m,
simply becomes the total mass supported by the isolation
level. These substitutions are summarized for the indicated

figures as follows:
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Figure 4.19A Simple Mass, Spring a=d Damper Network

Figure 4.19B Second Stage Isolation
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Figure 4.19C First Stage Isolation

My
e = e
(o 1 %6

Figure 4.19D Pier Isolation
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Figure 4.19B m > m (4~47a)

U
Cg > c (4~47b)
kS > k (4-47c)
Figure 4.19C my + m > m (4-48a)
Cp + c (4~-48Db)
kF > k (4-48c)
Figure 4.19D my +ompo+omy > m (4-49a)
Cq > c (4-49b)
kG > k (4-49c)

Once the scalar substitutions have been made, appro-
priate parallel forms are identified as s done for the
other networks using Egs 4-18, 4-20 and 4-22.

The three transmissibilities just solved are now
expressed in factored form for the six degrees of freedom
with Bode plot references given. Tables 4.5 and 4.6
summarize key frequency and unit time response performance

values, respectively.
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By O

Table 4.5

Single Isolation Frequency Characteristics Summary

T (ju)
TZU/L(jw)
TZL/P(jm)
TZP/G(jw)
Xy 1, (30)
TXL/P(jw)
TXP/G(jw)
TOU/L(jw)
TOL/P(jw)
TOP/G(jw)
Ty 30)
TwL/P(jw)

TwP/G(jw)

where,

Resonant Frequency

1.8

1.8

Hz

Hz

Hz

Hz

Hz

Hz

Hz

Hz

Hz

Hz

Hz

Hz

Peak Magnitude

24 .45d4B
24 .45dB
3.01d4B
24.45dB
24.45dB
5.42dB
21.394B
21.25dB
8.79dB
20.784B
20.794B

4.37dB

T(jw), transmissibility frequency function

(Ref 6:82)
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Z-Response (Second Stage Isolation)

TZU/L(jw) = ZU(jw)/ZL(jJ)

il

0.6786 (jw + 188.5)
(3w + 0.3393 * 311.30)

Bode plot is shown in Figure 4.20.

7z-Response (First Stage Isolation)

T2 5 Gu) = B (/25 (5)

it

0.6786 (ju _+ 188.5)

(jw + 0.3393 % 311.30)

Bode plot is shown in Figure 4.21.
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7 - RESPONSE (SECOND STAGE ISOLATION)
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Z-Response (Second Stage Isolation)

Figure 4.20
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Z-Response (First Stage Isolation)

Figure 4.21




Z-Response (Pier Isolation)

TZP/G(jw) =

Bode plot is shown

X-Response (Second

Zp(jw)/ZG(jw)

150.0(jw + 128.5)
(3w + 74.99 *+ j116.8)

in Figure 4.22.

Stage Isolation)

TXU/L(jm)

Bode plot is shown

]

XU(jw)/XL(jw) YU(jw)/YL(jw)

1.508 (juw + 418.9)

(3w + 0.7540 * §25.12)

in Pigure 4.23.
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Z - RESPONSE (PIER ISOLATION)
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Z-Response (Pier Isolation)

Figure 4.22
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X-Response (First Stage Isolation)

I

X, ,p (30) X (Ju) /Xp (30) =Yg (G) /¥ (30)

1.433(jw _+ 397.9)
(jw + 0.7163 * 323.87)

]

Bode plot is shown in Figure 4.24.

X-Response (Pier Isolation)

I

TX /d(jm)

p XP(jw)/XG(ju) = YP(jw)/YG(jw)

I

86.87 (ju + 199.6)
(Jo + 43.44 ¢ 3124.3)

Bode plot is shown in Figure 4.25.
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X-Response

Figure 4.24
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Figure 4.25




By =

PSI-Response (Second Stage Isolation)

Ty, (G0) = wyl3w) /vp (Go) = 6y (Gw) /6 (ju)

1.50 (jw + 188.5)
(jw + 0.7499 + 316.80)

Bode plot is shown in Figure 4.26.

PSI~-Response (First Stage Isolation)

Toy,p(30) = 0y (G0) /ip (3w) = 6y (Gu) /¢, (o)

It

1.554 (jw_+ 188.5)
(Jw + 0.7768 + §17.10)

Bode plot is shown in Figure 4.27.
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pSI-Response (Pier Isolation)

T@P,G(jw) = wp(jw)/wG(jw) = ¢P(jm)/¢G(jw)

i

81.75(jw + 128.5)
(jw + 40.88 2 j93.98)

Bode plot is shown in Figure 4.28.

Theta~Response (Second Stage Isolation)

OU(jw)/OL(jw)

]

TOU/L(jw)

i

3.061(ju + 418.9)
(jw + 1.530 £ 335.77)

Bode plot is shown in Figure 4.29.
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Theta~Response (First Stage Isolation)

TOL/P(jw) @L(jm)/OP(jw)

= 3.012(ju + 379.9)

(ju + 1.506 ¢+ 334.59)
(4-60)
Bode plot is shown in Figure 4.30.
Theta-Response (Pier Isolation)
TOP/G(jm) Op(jw)/GG(jw)
= 31.32(jp + 199.6)
(Jw + 15.66 t 377.51)
{4-61)

Bode plot is shown in Figure 4.31.
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Figure 4.30 Theta-Response (First Stage Isolation)
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Single Isolation Analysis

Analysis of the full and dual isolation schemes clearly
demonstrates the dominance of SSP isolation dynamics. The
single level isolation configurations verify isolator design
considerations for translation resonances and yield some new
insight into rotational isolator effects.

Reviewing the contents of Table 4.5, the Z direction
resonant frequencies for the second and first stage isolation
are at 1.8 Hz; the intended vertical resonance for each isolator
calculated in Appendix E. Similarly, the X (or Y) direction
has resonant frequencies of 4.0 Hz and 3.8 Hz for second
and first stage horizontal single isolator resonances as
planned in Appendix E.

An interesting result of the rotational transmissibilities
is the rotational isolator dynamics. The 0 resonance is at
5.7 Hz and 5.5 Hi for the second and first stage resonances.

A difference in resonance frequency for the two levels is due

to loading effects on isolator stiffness as is presented in

the X direction between the second and first stage isolator
horizontal resonances. The VP(or¢) direction has the same
resonant frequency of 2.7 Hz for both stages of isolation

which follows the same vertical frequency resonance for both
levels since the intended isolator vertical frequencies are
designed the same. 1In all, the translational and rotational
transmissibilities, the resonant magnitudes are nearly five times
greater for the second or first stage isolation dynamics

compared to the pier effects.
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In general, the pier dynamics are prominent at 20 Hz,
the upper limit of the active controller bandwidth. The
unit step time responses in Table 4.6 show the characteristic
slow time responses introduced by either the second or first

stage isolation dynamics.

Transmissibility Pole and Zero Analysis

The transmissibility transfer functions for the various
levels of isolation are analyzed for each of the six degrees
of freedom. For any direction, the full isolation case
represents the complete set of poles and zeros. By
eliminating an isolation level, the effects on the overall
transmissiblity can be verified.

The upper level dynamics in all directions predominate
the system performance. The lower level poles are possible
sources of instability as is discussed in Chapter Vv, with
the effects on the root locus. The pier dynamics do come
theoretically at the edge of the active controller bandwidth
at 20 Hz, but in actual measurements, the pier effects are
well above 200 Hz (Ref 18). Since the poles and zeros of
the various isolation levels do parallel those of the full
system, the solutions are verifiable. The slight differences
in pole and zero location are due to scaling caused by
different configurations having different applied loads.

The rotational transfer functions have an interesting
result. The 0 transmissibility zeros are the same as those
of the X or Y transmissibility zeros. Similarly, the ¢
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and ¢ transmissibility zeros are identical to the Z trans-
missibility zeros because the same spring and damper dynamic
matrices are used in the 0 and X(or Y) or y(ord) and X(or Y)
transmissibilities.

The Z transmissibility and X(or Y) transmissibility
pole/zero analysis summaries are in Table 4.7 and 4.8,
respectively. For the 0 and y (or¢) rotational transmissibility
pole/zero summaries see Table 4.9 and 4.10, respectively.
Several analytical checks are possible using the results of

these tables. First, the full isolation in any given

direction is equal to the combination of all three single
isolation levels. Secondly, the full isolation in any given
direction is equal to two levels of isolation plus a single
level of isolation in that direction. Care must be taken in
these calculations because the resonant frequencies (see

Eq 3-8) are a function of the isolator applied load. 1If
single levels are to be added for the full isolation verifica-
tion, each single level must consider the load applied to it.
Analyzing Figure 4.1 to emphasize the loading effect, the
second stage isolation load is my while the first stage load
is m {not

{not my + mL) and the pier stage load is m

L P

m, + my, + mL). Each pole and zero for the single stage

&

correspond exactly to the full isolation poles and zeros
when properly loaded. This verification is reassuring for
the transmissiblities methods used and the physical

intuition of the SSP. This verification was used successfully
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during the early phases of the study to check the various
transmissibility solutions.

Besides an interesting analytic check, the poles and
zeros typify the resonant frequencies and responses for a
given isolation configuration. These level traits are used

extensively in Chapter V to build active controller designs.

Summary

A thorough passive resporse study for each level is
not done for two reasons. First, the pneumatic isolator
and seismic pier soil characteristics are not known precisely;
sO0 approximating the SSP performance on the basis of
equivalent lumped parameter springs and dampers would only
be a qualitative treatment. Secondly, the theoretical
SSP frequency responses can give only general insight into
problems faced by the active digital controller. Chapter
V does expand on the directional transmissibility poles and
zeros using root-~locus concepts (Ref 4:203). Other important
points gained from the passive frequency responses are now
summarized.

The pneumatic isolators do have individual resonant
frequencies for the upper and lower levels taken separately
(single stage isolation) of 1.8 Hz for the vertical direction
and 3.8 Hz and 4.0 Hz for the horizontal motion (single
stage isolation) for the first and second stages, respectively.
The full isolation theoretically results in the first cutoff

at 1.3 Hz and second at 4.0 Hz. Actual SSP measurement at
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Holloman by FJSRL engineers calculated (Ref 19) vertical
frequency breakpoints at 1.2 Hz and 3.5 Hz.

Rotational isolator dynamics have not been specified
by MAC, but theoretical 0 resonant frequencies of 5.7 Hz
and 5.5 Hz for second and first stage isolation and 2.7 Hz
for y transmissibilities (both stages) are predicted.

In general, the poles and zeros do analytically follow
from one (direction) isolation configuration to another in
the complex frequency plane characteristics, when the
appropriate load scaling effects are considered. The
transmissibility solutions are mathematically and dynamically
correct.

Eq 4-35 is repeated for convenience as

TZU/G(jw) = ZU(jw)/ZG(jw)

111.2(j» + 128.5) (jw + 188.5

(jw + 0.3397 *+ j11.30) (jw + 82 % j119.8)
(4-35)

Using the straight line approximations (Ref 6:255),
the Eq 4-35 denominator presents positive slopes of 40 dB
while the numerator gives slopes of negative 80 dB which
results in a second order response. The denominator effects
do not become prominent until 20 Hz. To explain the

"second order response" measured at CGTIF (Ref 19) the Z
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response (SSP Isolation), Figure 4.2 is analyzed. A

-30 dB slope approximation is measured by FJSRL engineers

(Ref 19) for the vertical direction. The two second order
responses theoretically at 1.3 Hz and 4.0 Hz or measured

at 1.2 Hz and 3.5 Hz (Ref 12) cause large magnitude overshoots
which would distort any straight line approximation over

such a narrow bandwidth.

Based on the frequency analysis, the active LQ
controller synthesis first considers the second stage
dynamics. The reduced order controller is compared to a
truth model representing the SSP dynamics, neglecting pier
dynamics. Also from a classical controls viewpoint, the
active controller design is a difficult problem with the
small phase and gain margins theoretically present for the

full SSP isolation system.

123




V. Active Controller Design

Introduction

An active digital controller is designed using Linear
Quadratic (LQ) synthesis techniques based on several alternate
descriptions of the SSP dynamics. These alternatives arise
by considering the SSP isolation in the passive response
analysis along with the dominance of the upper level resonances.
The use of the upper level actuators is expanded as a serious
controls issue by including additional active control
actuators between the lower level and the pier.

Each alternative is developed using standard state
variable notation and partitioned submatrices from the
differential equations written to describe the SSP dynamics
in Chapter III. A simulation of isolator misalignments is
included to evaluate translational and rotational cross
coupling effects.

A linear quadratic cost function and control law is
defined to design a digital controller to meet the required
SSP performance specifications. A general procedure is
outlined for controller design process along with design
policy based on general SSP dynamics constraints. Each
controller is then designed and analyzed with classical
theory cited to reinforce the digital performance. Now, the
SSP state representation is discussed for the continuous

time domain.

124




SSP State Space Representation

The dynamics of the SSP describe a linear time invariant
system using standard state variable notation (Ref 6:27, 12)

as

A X(t) + B U(t) (5-1)

|
pry
i

C X(t) + D U(t) (5-2)

o
r'.
Il

2
where X(t), state vector derivative with respect to
time, column vector

X(t), state vector column vector

A, square matrix, order equal to dynamics
states of system (n)

B, input control matrix, n X r, where r is
number of controls, n is order of system

C, output matrix, p X n, where p is number of
desired outputs, n is order of system

D, feed thru matrix, p X r, represents controls
appearing in output

All the time dependence notation is later dropped for
convenience but is still implied. All derivatives are with
respect to time, an inertial reference frame, with constant
mass, nominal perturbed position and initial conditions as
indicated. The SSP state vectors and the A system matrix are
now defined in partitioned form using SSP generic state

variables as
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x x
X X
Y Y
— -— o K-R
X = Xz and X = Xz
X X
Y v
X X
¢ ¢
X b
| o] |70 (5-3)
where,
ix' X, and iz are generic state variables for translation
Y motion
iw, §¢, and X, are generic state variables for rotation
motion
(AX 0 0 0 0 AxO
0 A 0 0 0 A
b4 y©
A - 0 0 Az Azw AZ¢ 0
0 0 A A 0 0
Yz Y
0 A¢z 0 A¢ 0
AOx AOy 0 .0 0 AO (5-4)

where A, system matrix

"A_ , A_, Az , represent translation dynamics

X y
Aw ’ A¢ ’ AO , represent rotation dynamics
AxO ' Ayo , represent tganslatiop-rotation
A A cross coupling dynamics

zy ' Tz¢
sz ' A¢z , represent rotation—t;anslation
A A cross coupling dynamics

Ox ' "0Ox

0 , represents zero matrices
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For each candidate controller proposed, various A
partitions and state vectors are rewritten into either
reduced order controller models or partitions representing
a specific controller loop (really a single degree of
freedom). The state vectors and A matrix partitions are
expanded in Appendix J. The A matrices based on coeffi-
cients specified in Appendix F and G, are rewritten in state
form for Appendix J. To simulate the cress coupling terms,
isolator misalignments are simulated under random isolator
placement deviations of plus or minus a one-half inch over
a uniform distribution. Cross coupling coefficients are
also given in Appendix J along with the simulated isolator
placement distances.

As each controller design is discussed, the B, C, and D
continuous time @atrices are derived for the LQ synthesis.
Root locus and Nichols plots are made from TOTAL using
classical techniques to predict controller performance and
stability. In each case a basic controller structure is
developed along with a truth model structure reflecting
cross coupling effects.

Six basic controllers are developed, one for each of
the six degrees of freedom - three translational (X, Y, Z)
and three rotational (¢, ¢, ¢). Six independent control loops
are derived using second and first stage (SSP) isolation.
Truth models are derived using particular controller loops

and the appropriate simulated cross coupling terms. Reduced
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order models are derived from the SSP isolation configurations
by recognizing the dominance of the second stage isolation
dynamics from the transmissibility and pole-zeroc analysis

in Chapter IV. Next the LO design philosophy is specified

along with a description of the proposed control law structure.

Linear Quadratic (LQ) Synthesis

Of the numerous digital controller design methodologies
available, linear guadratic synthesis offers an optimum
controller derived on the basis of system state description
and a direct interaction with a performance index. Classical
theory (Ref 6:486) describes the performance index and cost
weighting matrix applied to continuous time controllers.

A LQ controller guarantees stability for any choice of
weighting matrices, using classical pole placement techniques
(Ref 12). A digital controller is proposed for the SSP
because of the system flexibility, expandability and desirable
control characteristics not found in analog controllers. 1In
either, the continuous or digital controller, the difficult
Riccati (Ref 6:495) equations are solved for the optimum
feedback solution. The digital solution is usually easierx

to obtain than the continuous solution (Ref 12). Further
theoretical development on the LQ synthesis for digital
controllers is covered in reference 12. The LQ synthesis
used in this study is a proportional integral (PI) controller

which guarantees a type 1 property desired for disturbance
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rejection (Ref 12, 6:176). Integration of the controller
with the SSP physical system is shown in Figure 5.1. The
LQO-PI digital controller structure is based on a control
difference or "Pseudo-Rate" (Ref 12) whose characteristics
have a cost weighting matrix assigned to the system state
representation which is augmented to the control input rate.
This LQ-PI design assures zero steady state tracking and
a non-zero setpoint (Ref 12). The non-zero setpoint requires
the control input to keep the SSP in the nominal position
for which this study's dynamic model is valid. Secondly,
the zero steady state tracking works to keep the accelerations
and tilts for each axis within the performance required by
the specifications. The LQ-PI controller structure with
the SSP dynamics is shown in Figure 5.2A. The discrete
controller representation is shown in Figure 5.2B.

The LQ-PI controller design is driven by a cost

function described as

tn+1
! _— . — KX K-R
J = f (¥ vy Y+ TG  u U + UL u_Uldt (5-5)
c c r

t

o
where J, quadratic cost function

Y, system output desired

output cost weighting matrix

U, control input vector
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U, control cost weighting matrix

Clo 0

, control input rate vector

control rate cost weighting matrix
T

r’
{ denotes transpose)

The quadratic cost function in Eq 5-5 provides the
pseudo-rate constraint by the Ur cost parameter. Since
constant gain matrices are desired for computation
simplification, the integration is carried out ignoring
a final transient in system performance and considers the
time interval to approach infinity for the steady state
system performance.

The digital Riccati (Ref 12) of Eq 5-5 specifies Gé
the optimum feedback gain. This feedback gain is shown

in Figure 2A separated into two separate partitions as

Gt = Gy 16X ] (5-6)

The actual controller gdin K, and K, of Figure 5.2B

X
is related to Gé by

ez 1 = (6,]6,,! (5-7a)
= [Ky K, ] 3-1 B (5-7b)

5 Dp
= Ky K, 1 [7] (5-7¢)
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where K , state feedback matrix
KZ , output feedback matrix

¢ , state transistion matrix

I , identity matrix

By . discrete input matrix

Cp + discrete output matrix

DD , discrete feedforward matrix

cl

, X, ¢, have discrete time argument ti implied. These
various forms are presented to simplify the
t

discussion later in the controller design process.

The feedback gains in K and K, would be actually

X Z
implemented in a real time SSP controller, while Il in
Eq 5-7c represents the digital approximation of a continuous
time system for a given sampling frequency. The T symbol
in Figures 5.2A and 5.2B is the time delay between sample
periods and in a digital controller implementation is a
value held (delayed) in computer memory. Such diagrams can
be confusing, because, for instance, a value for the difference
of Y(ti) and the output of a delay is indicated for Figure
5.2B. This difference is equal to the value of i(ti) at
the time t, minus the value of i(ti_l) - the output of the
delay from the last sample time.

The digital controller structure in Figure 5.2B

represents the following control input expression:

135




U (t5) = U (&, ) - KgIX(ty) - X(t;_ )]
K, [Cp Dpl Xt )
ﬁ(ti_l) (5-8)

The closed loop eigenvalues of the system shown in

Figure 5.2B are (% - B Gé ; which is shown from the following

D

discrete state difference equations.

-~

X(t,, ) = ¢(ti+1,ti) X(ti)

+ By (t,) [GX(t;) X(t;)] (5-9a)

It

[¢(ti+1,ti) - Bp(ty) GX(t;)] i(ti)

(5-9b)

If the system described by the state transition matrix
%, is stable, then the closed loop eigenvalues of the LQ-PI
structure are stable (Ref 12). Stability is addressed later
by controllability and observability issues in a general

désign approach.

Digital Controller Design Assumptions

Several assumptions in the controller design are made
in the SSP configuration, controller performance evaluation,
and digital constraints. First the SSP configquration is

discussed.
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A full representation of the SSP would include upper
and lower level, and seismic block (pier) structural resonances,
as well as the first and second stage pneumatic isolator
and foundation soil dynamics. By assumption, the structural
resonant modes of the SSP are neglected in this study.
Similarly, the pier dynamics by actual transmissibility
measurements appear to be above the 20 Hz upper active
controller bandwidth. Theoretical pier investigations in
Chapter IV do place pier isolation effects at least on the
upper edge of controller bandwidth (Ref 1). Certainly
seismic disturbances would also need to be modeled if a
full truth model was intended. A truth model is a mathematical
representation which attempts to describe the known system
characteristics of a dynamic system. This study is concerned
with the goal of_extending the -40 dB/decade (Ref 14:5)
transmissibility to lower fregquency bounds than presently
possible with passive isolation. This study considers the
SSP truth model as the dynamics of the first and second
stage pneumatic isolator dynamics with cross coupling effects
generated by possible simulated random isolator misalignments.

Neglecting pier dynamics poses two significant
anélytical dilemmas for the controller design. First, if
the pier adds no dynamics, it becomes part of the Earth
reference frame, or an inertial frame. The actuator must
be connected to some structure, the pier in this case.
Secondly, the actuators being connected to the upper level,

allow, in addition,a direct feedthrough force appearing
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directly as an acceleration (specific force) in the
translational motion and as a torque in the rotational
motion performance measurements. These points are

brought out in each controller design and assuming no pier
dynamics gives an optimistic controller environment. If
pier dynamics are allowed, they would appear transformed
directly on the upper level. A transformation would

occur simply because the actuator force is now with respect
to the pier coordinate frame, a non-inertial reference.

All expressions derived in Chapter III, Appendix F and G
are specifically derived for the equations of motion
describing the six degrees of freedom of the upper, lower
level and pier centers of mass with respect to the Earth

as an inertial reference frame. For the digital controller
design, the state representation of the SSP, considers the
pier as an inertial reference for the actuators, and includes
only the second and first stage isolation dynamics.
Controller actuators are proposed between the upper level
and pier (Ref 14). Lower level actuators are added for this
study based on physical intuition that more actuators

could better "steady" the lower level and the SSP.

To use the LQ synthesis technique, alternate represen-
tations of the SSP dynamics are developed for candidate
digital controllers by describing each in the state
notation of Egs 5-1 and 5-2. Cost analysis is also proposed

for each in the forms needed by Eq 5-5. Actual controller
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g e =

design is done using a program CGTPIF (Ref 7) which has

an option which accepts continuous time system matrices
(A,B,C,D),cost criteria and yields a digital controller

as shown in Figure 5.2B. Figure 5.2B is a discrete
representation of the SSP dynamics and control law. No
digital approximations are made for the dynamics of the
analog to digital (A/D) converters. The sampling frequency
is 200 Hz which is selected to be ten times 20 Hz, the
highest frequency limit on the controller bandwidth.

The CGTPIF digital controller design software has
options intended for time domain analysis and is adapted for
LQ-PI controller feasibility. ©No frequency domain analysis
with a Bode plot or PSD options is available. To evaluate
the LO-PI feasibility, passive isolation time responses
are made using TOTAL for a unit step input and compared to
CGTPIF time responses with initial conditions appropriate
to the TOTAL analysis. Early efforts on the FJSRL Iso-Pad
controller design (Ref 4) used unit step time responses over
a four second settling time criteria to meet controller
specifications. Approximations are made for the resulting
exponentially damped sinewave unit step response. First,

a ﬁnit step can be scaled, as was done in Chapter IV
transmissibilities studies, as long as the system operation
remains linear. The unit step could be considered as an
one g input disturbance for translation control and as one

arcsecond tilt disturbance for rotation control analysis.
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These inputs can be scaled appropriately once true
disturbance magnitudes are known without reaccomplishing

the controller simulations. Secondly, the damped frequency
is an approximation of the acceleration output frequency
content for the translation controllers. The tilt specifica-
tions are given in time response constraints and are
evaluated directly from the CGTPIF analysis for the rotation
controllers. The controller design approach using CGTPIF

is now discussed.

Controller Design Approach

The SSP digital controller is approached as six
individual controllers - one for each degree of freedom.
Actually, only four loops are needed because the X and Y,
and ¥ and ¢ loop pairs are identical.

Within each loop, two system A matrices are possible
by considering the full SSP isolation dynamics or a reduced
order model using only the upper level dynamics. In the
SSP isolation controller structure, three further permutations
are possible using combinations of the upper and lower
level actuators. These permutations result in one multiple-
input multiple-output (MIMO) system or two single-input
single-output (SISO} systems - the upper or lower level
actuators for control inputs. The translation (X, Y, Z)
controller has a direct feedthrough of the actuator (specific

force or acceleration) along with state combinations to the
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output (upper level) acceleration, while the rotation
controller (Y, ¢, O) output tilt is a system state with
no feedthrough contribution.
In summary, four configurations are analyzed for the

two basic controllers in each direction designated as

1. SSP Isolation (MIMO) - Upper and Lower Level

Actuators
2. SSP Isolation (SISO) - Upper Level Actuators
3. 8SP Isolation (SISO) - Lower Level Actuators

4. Second Stage Isolation (SISO) - Upper Level
Actuators

Controller costs are specified for Eq 5-5 in each
controller design. The actuator cost weight U, is derived
using guidelines (Pef 11) for a control weighting equal to
the reciprocal of the maximum actuator force squared. The
maximum SSP force available is ten pounds (Ref 14:24) which
yields a 0.01 weighting for Uc. The control rate U, is
assumed to be 0.1, as ten times the actuator cost weight.

The output cost YC is varied from 1 to 100 with the results
noted in each controller design section. The cost weighting
matrices have zeros added for the MIMO and SISO configurations
to account for input control configurations, no cross

cost considerations, and a desired system output penality.

Controllability and observability analysis is theoretically
commented on in each controller section using basic analysis

of the B input matrix and C output matrix for controllability
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and observability measures directly. The results in each
case is verified using a software package "MIMO" (Ref 13)
but is not listed in the study.

All configurations suffer from being weakly controllable
which is a direct function of the coefficient value in the
B input matrices being either scaled by large mass (trans-
lation) or mement of inertia (rotation). For example,

By matrix for X controller is scaled by the upper and lower
masses. The factor 1/mU scales Eq F-5 by 0.0019 which is
evident in the last row of Ax and Bx in the X - Controller
{(SSP Isolation). To  avoid the controllability problen,
the candidate controller design uses the B input coefficient
resulting from the dynamics equations in Appendix F and G,
but the CGTPIF simulation used values scaled to one.
Physically, any input actuator force is attenuated by such
a mass scaling factor and is describing the reality that a
small force does little to induce an acceleration or tilt
to a large mass.

Observability theoretically is the most serious control
problem for the SSP. Only the second stage isolation
controller types have outputs using upper level states.

The translation controllers do not have their acceleration
outputs as distinct system state while the tilt output of
the rotation controllers is. The SSP isolation type controller

has no outputs for the control law taken from the lower level.

142




Unfortunately, the lower level is physically inaccessible

and instrument monitoring is unlikely, so the 8SP
MIMO system has observability problems as will be

A controller is now designed for each of the
basic configurations in each direction {degree of

A root locus and Nichols plot is included to give

isolation -
demonstrated.
four
freedom) .

insight

into the controller performance based on classical concepts.

The unit step responses from the TOTAL and CGTPIF

programs are included for performance evaluation.

simulation

Digital

controller designs for successful (with Riccati solutions)

CGTPIF simulations are listed in Appendix K by direction loop

name configuration type.
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X - Controller (SSP Isolation)

The truth model for the X controller is rewritten
from the partitions of Egqs J-8A and J-8F for the X state

variable and cross coupling terms as

o — —_ _—
X, a, A ||, B, o | |5,
Xq Aox  Bo | %o 0 Byl { Yo
(5-10)
Y = C X +D U (5-11)
X X X X X

The X state space model using SSP dynamics for X loop,
with no rotational cross coupling (no truth model), reduces

Eq 5-10 to

K2
X = A_X +B_U (5-12)

Using the state notation from Eq J-2 and the A matrix
values from Eq J-~10, the X state representation is written

completely as

o - y
il 0.0000 1.0000 0.0000 0.0000
§2 - -2740.0000 -6.7424 1140.6054 1.7230
§3 0.0000 0.0000 0.0000 1.0000
§u i 631.6547 1.5080 -631.6547 -1.5080] |

(5-13)
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The root locus

of the X open loop is obtained by

considering the X transmissibility for the SSP isolation

as a

locus is shown in Figure 5.3.

unity feedback continuous time system.

The root

Four complex poles are

located near the imaginary axis with two poles in the left

half plane (LHP)

poles pair seek out

{Ref

6). The lower frequency complex

the two system zeros while the higher

frequency poles cross the imaginary axis into the right

half plane (RHP) along a vertical asymptote parallel to the

imaginary axis.

The cross effect between the two pair of

complex poles is a stability consideration because of the

SSP isolation
locus for the
dynamics have

The poles and zeros

Poles: p,,,
P3,u

Zeros: z, =
z, =

A Nichols plot
in Figure 5.4 which

and 5.39°

minimum phase and gain margins.

SSP isolation

All root

(translation and rotation)

the same general shape and analysis comments.

are repeated from Eq 4-35°¢

= =0.4079 + j1823
= =3.717 + j55.00
-397.9
~418.9

for the open loop transfer function is

shows how the 5.29 dB (6.5 Hz) gain margin

(4.5 Hz) phase margin affect controller stability.

A unit step continuous time response is shown in Figure 5.5

with a $+0.20 damped

approximatedat four

unit step responses.

sine wave at 3.13 Hz (on a bias of one)
seconds for comparison to the CGTPIF

Other characteristics of Figure 5.5
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X — RESPONSE(SSP ISOLATION)
Joo:

+ 17,14

-17.14

lSCﬁLE- 17,1429 UNITS/INCH|

—  K(5+307,9)(5+4108,9)
OLTF(S) (52+40.B165+332.499)(5%+7,4345+3036.816)

Figure 5.3 X - Response (SSP Isolation) - Root Locus
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are summarized in Table 4.4, under the TXU/P

(t) response.

Various SISO type controllers are tried using the

following actuator configurations as
Upper Level Actuator:

0.0000] [F]

0.0000

0.0000

[0.0019]

Lower Level Actuator:

| 0.0000 [£,)

0.0034

0.0000

| 0.0000 |

0.00G60

0.0019

(5-14)

0.0034
0.0000

(5-15)

The output is the same in both configurations:

Y, = [631.6547 1.5080 -631.6547
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and f, are the U, terms in Egq 5-12 which represent

FX X
the X upper and lower level actuator resultant forces. The
lower actuators are indicated by f in Figure 3.4. Resultant
forces from these actuators use a subscript for the summation
orientation on the SSP. No solutions are possible from
CGTPIF for these SISO configurations, even with Bx scaled
to one to account for the weak controllability. These
controllers are not fully observable and controllable. More
design analysis is done with SISO configurations for the Z
controller.

A MIMO configuration is tried using the upper and lower
actuators with the only output being the upper level accel-
eration, which is a combination of system states and not

fully observable; The BX and CX matrices are listed below:

_ )
0.0000 0.0000 £y
B 0.0034 0.0000 Fy
B, U =
XX 0.0000 0.0000
| 0.0000 0.0019 (5-17)
[ b
Y, 0.0000 0.0000 0.0000 0.0000 X1
Y, 631.6547 1.5080 -631.6547 -1.5080 X,
X,
Xy
0.0034 0.0000 £y
+
0.06000 0.0019 Fy
(5-18)
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3

CGTPIF provided a solution which is listed as Case 1,
Design A in Appendix L. An approximate estimate of the system
response can be made from Figure 5.6 as a peak-to-peak response
seconds) of $0.02 damped sinewave at 3.12 Hz on a bias of
one. The X acceleration unit step response is simulated
by an initial condition of 0.0016 for state X;. The Y,
output is a zero row because the lower level is not readily
accessible. The Bx input matrix is scaled to one to compensate

for weak controllability. No increase is possible in the

output cost Yc without destabilizing the system output.

X - Controller (Second Stage Isolation) - SISO

The upper level and the second stage isolation dynamics

partitioned from Eq 5~18 yield the reduced order model as

X, 0.0000 1.0000 | |x, 0.0000 | F,
= +
X\ -631.6547 -1.5080 | |X, 0.0019
(5-19)
Y, = [-631.6547 -1.5080] [X,] + [0.0019] F,
X,
(5-20)

The reduced order system root locus is shown in Figure
5.7. Two complex poles have their root locus return to

LHP an implied zero in the far LHP, not shown due to plot
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e 2

scale. This root locus plot is typical for the second
stage reduced order models for all directions. Essentially,
this reduced order controller does not go unstable due to
higher gains, because the system eigenvalues are moved
further into LHP. The second stage isolation poles and

zeros for the open loop transfer function are:

Poles: p;,2 = =-0.7540 + 3j25.12

Zeros: z; = -418.9

A 10 degree phase margin can be approximated from the
Nichols plot in Figure 5.8. Gain margin is not a constraint
either in the Nichols plot or the root locus plot.

A unit step time plot for the open loop continuous
time response is shown in Figure 5.9 which shows $0.075
damped sine wave at 4.17 Hz on a bias of one. A summary of

Figure 5.9 is listed in Table 4.6 for TX L(t) response.

u/
Case 2, Design A is the CGTPIF digital controller for
the X second stage dynamics reduced order controller. The

CGTPIF unit step response shows in Figure 5.10 (at 4 seconds)

a +0.08 damped sine wave at 4.17 Hz for an initial condition of

X3 equal to -0.0016. The LQ-PI controller removed the bias
present before in Figure 5.9 produced by TOTAL. For CGTPIF,

B, is scaled to one as weak controllability compensation

X
and the output cost is kept to one to prevent instability.
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Z - Controller (SSP Isolation)

The truth model for the Z controller is rewritten from

the partitions of Egs J-8c, J-8d and J-8e for the 7 state

variables and cross coupling terms as

o

b
0

o

ol
I

The 2

reduces Eq

o
il

Using

Az Azw

A A
Yz 7

A¢z 0

c_ X +
z "z

state space

5-21 to

T
Az¢ Xz Bz 0
[ X +10 B

Y

% T 0
Bl %] |
DZUZ

=]
cl

ol
L)

al
3

model using SSP dynamics for Z loop

(5-23)

the state notation from Eq J-4 and A matrix

values from Eq J-18, Eq 5~23 is written as

X109

X1

X12

( 0.0000
-589.8553
0.0000
127.9101

1.0000 0.0000
-3.1292 230.9726
0.0000 0.0000
0.6786 -127.9101
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1[ . ]
0.0000 X
1.22%4 X10
1.0000 Xn

-0.6786 X12
(5-24)




The Z root locus plotted in Figure 5.11 is analyzed
and commented on similarly to the X - SSP Isolation open
loop root 1locus.

Poles and zeros are repeated from Eq 4-33:

Il

Poles: pi,:2 -0.1883 * j8.422

-1.716 + 325.37

P3su
-188.5

[l

Zeros: 2,2

A Nichols plot drawn in Figure 5.12 depicts the 5.25 dB
(3.0 Hz) gain margin and 5.71° (2.0 Hz). A unit step contin-
uous time response is shown in Figure 5.13 with a *0.60
damped sine wave at 1.32 Hz (on a bias of one) approximated
at the four second time criteria for comparison to CGTPIF.
A further summary of Figure 5.13 is made in Table 4.4 under

the T2 (t) response.

u/p
Several SISO controllers are proposed using the following

I actuator configurations as.

Upper Level Actuators:

[ 0.0000

0.0000 ) 0.0000
B F. = D, =
Z'z z 0.0019

0.0000 .
0.0019

L J

(5-25)
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Lower Level Actuators:

[

0.0000
0.0034
0.0000

0.0000

The output expressi

[Ye] = [127.9101

Only the upper actu
a digital controller des
Yc is varied from 1000 t

results:

Ye

1000 (Design A)
10,000 (Design B)

100,000

0.0034

0.0000

(5-26)

on is the same in both designs:

0.6786 -127.9101 -0.6786] [ X,
X10
X1
| X1z
(5-27)

ator configuration (SISO) provided
ign from CGTPIF. The output cost

o 10,000 with the following performance

Z - Acceleration

+0.1 damped sine wave (1.35 Hz, bias -0.5)
$0.6 damped sine wave (1.35 Hz)

no solution from CGTPIF
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The input matrix B, is not scaled and the designs are

Z
listed in Case 3, Appendix L. Of all the SISO controllers
for any SSP isolation, CGTPIF gave a solution for the Z
direction. No step responses are available but their form
is similar to Figure 5.14. The only explanation is the
double zero in the root locus at -188.5 and is probably a

theoretical dynamic structure not necessarily possible in

the actual SSP dynamics.

A MIMO design is built using the following BZ' Yc
expressions:
0.0000 0.0000 fZ
0.0034 0.0000 F
B, = z
z 0.0000  0.0000
| 0.0000 0.0019 | (5-28)
- -
Yg 0.0000 0.0000 0.0000 0.0000 Xg
Ye 127.9101 0.6786 -127.9101 -0.6786 X110
X1
X2
b -
0.0000 0.0000 £
. Z
0.0000 0.0019 FZ
(5~-29)
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CGTPIF obtained a digital design listed in Appendix L,
Case 3, Design C. The unit step acceleration for an initial
condition on Xy of 0.0078 is shown in Figure 5.14. The
performance approximated at 4 seconds in Figure 5.14 is
+0.0729 damped sine wave at 1.32 Hz. The input matrix BZ
is scaled to one and Yc could not be increased past one.
The discrete B_ input matrix is listed in Case C.

D

Z ~ Controller (Second Stage Isolation) - SISO

The upper level and the second stage isolation dynamics

partitioned from Eq 5-24 yield the reduced order model as

X11 0.0000 1.0000 X1
| = + [0.0019] F,
X112 -127.92101 ~-0.6786 Xi2
(5-30)
Y = [-127.9101 ~0.6786) | Xn + [0.0019} FZ
X1z
(5-31)

A root locus for the upper level dynamics is shown in
Figure 5.15 and is typical of the second stage root locus
as discussed for the X controller. The second stage isolation
poles and zeros for the open loop transfer function from

Eq 4-50 are:

Poles: pi,2 = -0.3393 £ j11.30

Zeros: 2z; = =188.5
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e

A 10 degree phase margin can be interpreted from
Figure 5.16. Gain margin is not a constraint either in
the Nichols plot or root locus.

A unit step time response for the open loop continuous
time system is shown in Figure 5.17 which shows at four
seconds a $0.3 damped sine wave at 1.79 Hz on a bias of one.
A summary of Figure 5.17 is listed in Table 4.6 for TZU/L(t)
response.

Case 4, Design A is the CGTPIF digital controller designed
for the Z second stage isolation. The CGTPIF unit step
response shows at four seconds in Figure 5.18 a #0.5021
damped sine wave at 1.92 Hz for an initial condition of X
equal to -0.0078. The designed controller removed the
bias present in the open loop response. The digital controller

required B, scaled to one and Yc equal to one for a solution.

4

PSI - Controller (SSP Isolation)

The truth model for the § controller is rewritten from
the partitions of Eq J-8c and J-8d for the y state variables

and cross coupling terms as

>
>
i
o
of
=i

>
o
Ed|
ol
s¢]
i

(5-32)
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Y o= c X + D, U (5~33)

The state space model using the SSP dynamics for v

loop reduces Eq 5-32 to

X = A X + B, U (5-34)

Using the state notation from Eq J-5 and the A matrix

values from Eq J-26, Eq 5-34 is written as

- . T
X1j 0.0000 1,0000 0.0000 0.0000-1
X1y ~1425.4116 -7.5620 563.1032 2.9870
o =
X1s 0.0000 0.0000 0.0000 1.0000
o
X1s 281.5035 1.4934 -284.0217 ~1.5068

(5-35)

The root locus of the Yy open loop is derived from ¢
transmissibilify for the SSP isolation with a unit feedback
continuous time system. The root locus is drawn in Figure
5.19 and is analyzed for the same general form for the X
SSP isolation controller.

The poles and zeros are repeated from Eq 4-42:

Poles: pi3,2» = -0.4201 + j12.58
Ps3,s« = -4.160 * 339.38
Zeros: 2,2, = -188.5
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PST -

RESPONSE(SSP ISOLATION)
Jo:

+ 51.43

|SCALE- 17.1429 UNITS/INCH

OLTF(S)

K(S+188,5)2
(5%+0.8405+158,433)(52+8,325+1568.09)

Figure 5.19

PSI - Response (SSP Isolation) - Root Locus
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A Nichols plot is drawn in Figure 5.20 which shows
the 6.33 dB (4.7 Hz) gain margin and 8.3° (3.1 Hz) phase
margin for this controller design. The continuous time
unit step response is plotted in Figure 5.21 which at four
seconds is a #0.3 damped sine wave at 2.08 Hz (on a bias of
one) to be compared later to the CGTPIF discrete time
response. A summary of Figure 5.21 is listed in Table 4.4
under TwU/P(t) response.

Two SISO controllers are planned using the following

actuator configurations as

Upper Level Actuator:

f 0.00007] [T ]

v
0.0000

vy o 0.0000

0.0004 | (5-36)

Lower Level Actuator:

i 1

0.0000 t
[IP]

0.0009

B t, =
bv 0.0000

0.0000 J (5-37)
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The output is the same in both configurations:

Y¢ = [(0.0000 0.0000 10.0000] { X3

(5-38)

Notice the Ys output is simply the ¢ tilt and also

Dw = 0. The Bwterms in Eq 5-36 and Eq 5-37 are scaled by

the X moments of inertia for the upper and lower levels.

Based on past experience, Bw will be scaled to one as was

done for translational controllers due to CGTPIF not being

able to reach a solution. The translation analogy to the large
mass and small force or torque in this case parallels
rotational dynamiés from the translational physical realities.

The U, vector has upper level ¥ torques (T,) and lower level

v
¥ torques (t

]
). Appendix F, Eg F-14 and F-15 relate the

v
actuators and torques.

CGTPIF gives no SISO solution for the y controller.
Again, observability and controllability deficiencies plaqued
the controller design process.

A MIMO controller is proposed using the following input

matrix and output equation:
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0.0000
0.0009
0.0000

0.0000

0.0000

0.0000

5, Design A in Appendix K.

is plotted in Figure 5.22.

wave at 2.0 Hz response.

0.0000
0.0000
0.0000

o.ooo4j

0.0000

0.0000

obtained the digital controller listed in Case
The unit tilt discrete response
An approximation is made of
Figure 5.22 at 4 seconds estimating a $0.1760 damped sine
This response resulted from an
initial condition for X;;equal to one. .
zero row assuming the lower level is not accessible.
matrix is scaled to one for weak controllability compen-
sation and Yc is not set above one, since the tilt output

is unstable for high costs.

PSI - Controller (Second Stage Isolation)

The upper level and the second stage isolation dynamics

partitioned from Eq 5-40 yield the reduced order model as
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X1s 0.0000 1.0000 X1s
o |= + [0.0004) T
X1c -284.0217 -1.5080 X 16 v
(5-41)
Yo = [1.0000 0.0000] X1s
X1
(5-42)

The PSI second stage isolation open loop root locus is
shown in Figure 5.23. This is a typical second stage root
locus as described for the X direction. The open loop

poles and zeros from Eq 4-56 are repeated as:

Poles: pi1,2 = =0.7499 + j16.80

Zeros: z, = -188.5

The typical second stage 10 degree phase margin is read
from Figure 5.24, PSI - Response (Second Stage Isolation) -
Nichols Plot. Neither the root locus or Nichols plot indicate
a gain margin problem.

An open loop unit step continuous time response is
plofted in Figure 5.25 which shows at four seconds a *0.075
damped sine wave at 2.5 Hz on a bias of one. A summary of
Figure 5.25 is available in Table 4.6 for the TwU/L(t)

response.
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Case 6, Design A is the resulting digital controller
from CGTPIF. The input matrix BW is scaled to one for weak
controllability and the output cost Y, is kept at one because
increased costs destabilize the output tilt. The unit tilt
response is shown in Figure 5.26 which at four seconds is

a $0.0108 damped sine wave at 2.78 Hz for an X;s initial

condition equal to one.

Theta - Controller (SSP Isolation)

The truth model for the 2 controller is rewritten from
the partitions of Egs J-8a, J-8b and J-8f for the O state

variables and cross coupling terms as

3] | %] | IR

k-3 — — —_ _ -—

Xx Ax 0 AXO Xx Bx 0 0 [ (Ux

X (=19 a a X 5 B O i)

Y 0 Yy yo y| + Yy y

K 3 _— — —_— —

X A A A X, 0 0 B U

L@d _OX OY .JLO.. L 9.] _G-
(5-43)

Ye = CO XO + DO o (5-44)

The state space model using SSP dynamics for the

loop reduces Eg 5-43 to

(5-45)

)
i}
o
el
+
o
cl
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Using the state notation from Egq J-7 and the A matrix

values from Eq J-36, Eq 5-45 is written as

[ o 1 l'
X1 0.0000
X232 -6104.7858
%os| 0.0000
| %ou| | 1279.9637

The root locus is
SSP isclation form and
isolation root locus.

from Eq 4-39:

Poles: pi,:2

Pa,u

Zeros: 2a

Z2

A Nichols plot is

1.0000 0.0000 0.0000 X2
-15.0218 2560.1284 6.1119 X2,

0.0000 0.0000 1.0000 X23

3.0557 -1289.5446 -3.0786 X2y

(5-46)
drawn in Figure 5.27 with the usual
general comments made for the X SSPp

The poles and zeros are repeated

~0.8363 + 3j26.10

i

]

-8.273 + j81.81
-397.9
-418.9

drawn in Figure 5.28 showing the

6.22 dB (9.8 Hz) gain margin and 7.1° (7.0 Hz) phase

margin. A continuous time unit step response is shown in

FPigure 5.29 with a $0.05 damped sine wave at 4.17 Hz {(on a

bias of one) approximated at the 4 second comparison time. |

More information on the time response is listed in Table 1

4.4 under the function

TOU/P(t).
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THETR - RESPONSE(SSP ISOLATION)

[SCALE- 25.7143 UNITS/INCH

e Bi5+397.02(S+418,9)
OLTF(S) (82+1.6733+661.9091(5%+15,5465+8769.683)

Figure 5.27 Theta - Response (SSP Isolation) - Root Locus ‘
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Several SISO controllers are attempted using the following

actuator configurations:

Upper Level Actuator:

[ 0.0000] [T.]
0.0000

0.0000

| 0.0001 | , (5-47)

Lower Level Actuator:

. -

0.0000 [t@]

0.0004

0.0000

0.00004 (5-48)

The output is the same in both configurations:

(Y:2] = [0.0000 0.0000 1.0000 0.0000] [X,
X2

X23

Xy
L J

(5-49)

The Y;, output is the 0 tilt. No SISO solutions are
possible from CGTPIF. The input matrix By is scaled to one,
but observability and controllability problems prevented an

optimum controller solution.

190




A MIMO controller is specified using the upper and lower
actuators with the output as the 9 tilt for the following

system expressions:

(0.0000 0.0000 t6
0.0004 0.0000 T
BT, = ©
070
0.0000 0.0000
0.0000 0.0001
{5-50)
Yi1 0.0000 0.0000 0.0000 0.0000 ng;
Yiz 0.0000 0.0000 1.0000 0.0000 X2
X23
X24
|, p
{5-51)

The Y;; output is a zero row because the lower level is
physically inaccessible.

CGTPIF provided the solugion listed in Case 7, Design A,
Appendix K. An estimate is made from the 0 unit tilt discrete
time response in Figure 5.30 for the tilt at 4 seconds to be
$0.019 damped sine wave at 4.17 Hz for an initial condition
for state X;; equal to one. The By input matrix is scaled
to one for controllability compensation and Y, the output

cost remained at one for tilt output stability.
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Theta -~ Controller (Second Stage Isolation)

The upper level and the second stage isolation dynamics

partitioned from Eq 5-46

1 0.0000 1.0000 Xs3
+ [0.0002] TO

X273
j -1289.5446 ~3.0786 ngJ

{5-52)

{1.0000 0.0000]}

Yi2
{5-53)

X24

The reduced order system open loop root locus is shown
in Figure 5.31 and is typical of the second stage isolation

dynamics. Poles and zeros are repeated from Eg 4-59 as:

-1.530 t §35.77

Poles: pai.2

Z2eros: z; = -418.9

About a 12° phase margin is indicated in the Nichols

plot drawn in Figure 5.32. Gain margin is not a constraint

in either the Nichols plot or root locus.

A continuous time response is plotted in Fiqure 5.33 with
a flat step response at the four second criteria point. A
(t)

summary of Figure 5.33 is given in Table 4.6 under the TOU/L

response.
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THETA - RESPONSE(SECOND STAGE ISOLATION)
Jo,
% 51.43
+ 34.20
% 17.14
o
T leesr T lstas T T lsezs T T ltnas T F
+-17.14
+~34.29
+~51.43
[SCALE- 17,1428 UNITS/INCH]
K(S5+418.9)
OLTFIS) 573, 065+1281.834)
Figure 5.31 Theta - Response (Second Stage Isolation) - Root Locus
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CGTPIF provided a digital controller design in Case 8,
Appendix K. Design A is plotted for comparison in Figure
5.34 at four seconds is a *+ 0.0011 damped sine wave operating
at 6.25 Hz. B

0
for output stability. Design B, with B

is scaled to one and Yo is limited to one
0 unscaled gives a
+0.01 damped sine wave at 6.25 Hz on a -0.01 bias, with no
plot available - the form would be similar to Figure 5.34.

Design B offered no improvement with increasing Y-

Summary

Four control issues result from the controller design
effort - observability, controllability and SISO/MIMO
configurations. These areas are discussed by reviewing
the control designs for the translation and rotation controller.

The translation controller performance is approximated
by analyzing the continuous open loop unit acceleration
steps from TOTAL and the discrete time step responses from
CGTPIF, a certain point in time -~ four seconds elapsed response
time. The unit step and output response can give a measure
of transmissibility, namely, if unit input disturbance is
applied to a linear system and the output is 0.01, the system
offered -40 dB attenuation. In frequency domain analysis,
sinusoid inputs would have to be assumed for a rough approx-
imation. Since this is a feasibility study, such a rough
estimate can be made. Also this approximation gives some
idea of the frequency content of the system output - but only

for the damped sine wave frequency. The Z -~ Controller
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VI. Conclusions and Recommendations

Conclusions

Analytically, the pneumatic isolators in a dual isolator
stage configuration have severe phase and gain margin
limitations which can be seen in any one of the six degrees
of freedom - in either the appropriate Bode plots, root
locus plots or Nichols plots. A single level of pneumatic
isolation avoids the minimum phase and gain margin charac-
teristics but sacrifices the much needed passive transmissi-
bility attenuation to acceleration and tilt disturbances.

The lightly damped response of the pneumatic isolator yields
high resonaqt magnitude peaks well within the SSP operation
of bandwidth and produces corresponding slow time responses.

The actuator energy requirements are very substantial
because of the la?ge SSP mass and moment of inertia scaling
factors present in all controller designs evidenced by weak
controllability.

Observability is a major control issue. The translation
control loop output is an acceleration which is a combination
of system states making observability difficult. Rotational
controllers have a tilt output that is a distinct system state,
but the rotation and the translation controllers both cannot
observe the lower level states at all. No lower level
outputs are taken for the LQ-PI control law because in the
actual controller implementation no instrumentation is provided
for state estimation.
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The rotational performance could be reviewed, since
the specification is a displacement constraint not a power
spectral density. The SISO controllers did provide design
solutions within the *0.02 tilt specification, but not
realistic in light of the truth model. Also all the SISO
controller B inputs had to be scaled indicating weak
controllability. The Theta - SSP Isolation Controller - MIMO
met the tilt specification with the B matrix unscaled,
again the truth model simulation deteriorated the performance.
Observability is a problem for the lower level states.

The tilt output is a system state which improved stability
as opposed to the translation acceleration output which
are system state combinations.

One important CGTPIF application note did result. 1In
cases where B is scaled to one, almost no tolerance is given
to increasing the‘output cost which causes outputs to go
unstable and grow with time. Since this is a basic feasibility
study, no further efforts are made to delineate the CGTPIF
solution instabilities due to SSP dynawnics (observability
and controllability) or CGTPIF numerical difficulties, or
combinations of both. A quick review of Appendix K shows
a wide dynamic numerical range.

As a precaution, the digital controlled sample frequency
is increased to 2 KHz with no performance improvement noted
in the discrete time step responses or controller stabilities.

No tabulation or plots of this simulation are made.
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The SSP theoretical models should be taken seriously
since they accurately predict vertical acceleration resonant
frequencies and account for the observed "second order
responses" resulting from a combination of high resonant
magnitudes and second order attenuations discussed in Chapter

Iv.

Recommendations

1. Further SSP active controller efforts should either
verify this study's dynamics or develop new dynamic models
that can be verified by site measurement. Only when such a
dynamics model exists should a careful digital controller be
designed, simulated and verified.

2. Further SSP measurements could verify or disprove
the rotational dynamics. Cross correlation between rotational
and translational measurements would identify the magnitude
of cross coupling modes. .

3. More elaborate active controllers could be studied
as discussed in Reference 16, using this study's dynamics
model as a starting point.

4. Engineers could accept the passive response and
estimate and predict axis accelerations and tilts, compensating
the test inertial instrument evaluation profiles based on
proven parameter estimation schemes (Ref 12).

5. CIGTF could reconsider the passive response offered

by the underground test facilities in abandoned mines. Such

201




a natural isolation system would not have the lightly
damped, high resonant peaks that pneumatic isolators do
exhibit. Soil dynamics have higher damping ratios and could
be augmented with a second stage fluid isolation system,
similar to those techniques used in mechanical gyroscopes.
6. Future seismic isolation systems could consider
single level pneumatic and/or fluid isolation. Single level
pneumatic isolation would avoid phase and gain margin constraints
and instabilities of dual pneumatic isolation. Fluid
isolation would exhibit a better time response by avoiding

lightly damped dynamics.
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Appendix A SSP Physical Dimensions
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Drawn to 30th scale.

Figure A.1 Upper Level
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SF 4O
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Drawn to 30th scale.

Figure A.2 Lower Level
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Figure A .3

&

Dimensions as shown.

Pier and Seismic Block
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Appendix B CSDL Specification Calculations and Conversions

Item 1, CSDL specification, conversion from meru's

to arcseconds/second.

]

10" °meru 10 Smeru (0.015 arcsecond/second

mexru

i

1.5 X 10 7 arcseconds/second

Item 2, an error of one arcsecond on the Earth's
surface is approximately 100 feet. For an hour, the one
arcsecond error corresponds to the following average

velocities and acceleration (expressed in g's).

<
i

av 100 feet/hour Vav , average velocity

A = _Yav_ = 100 feet 1 hour = 3600 seconds
hour (hour) ?

= 100 feet g, gravity units,
(3600 seconds)? 32.2 feet/second?
_ 100 feet
(3600) °seconds? 32.2 feet
second?
A 10 'g's

The SSP must meet 10 °g's, to be ten times better

than the measurement environment. T35 instruments are
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expected to be ten times more accurate than present
instruments, thus 10 °g's.

Item 3, measurement bandwidth is derived as follows:

f = % where T, period (seconds)
f, frequency (Hz)
£ = B S 10" Xz
100 sec

for a one hundred twenty day period:

1

(120 days)(24 hours/day)(60min/day)(60sec/min)

= 9.64 X 10 ®Hz

A 10 Hz
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Appendix C. Direction Cosine Matrix Transformation

Angular rotation for the SSP are taken in the order
wU ’ ¢U and GU for the upper level about the e, , e ’
and é3 axis respectively. OU corresponds to an azimuth
angle and ¢U and wU are tilt angles available possibly from

tiltmeters.

51 cosOU sinOU 0 e,
a, = —sinOU cosoy 0 e, (c-1)
as 0 0 1 e,
a = c® (o,)e (C-2)
_ae ] [+]
= (:)Ua3 = OUe3 (C—3)
A e,
n 53
a,
T N
/'e2
0
u
81 ;1

0 Rotation about ej
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cosé, 0 —sin¢Uw ay
0 1 0 ;2
sing,, 0 cosdy, Laz
] i J
_ ba .
b = C7 (3,2
. S A °
oP? = ¢z = oyb2
N
b
oy
4. N b
o 7
ou
aj) bl

¢ Rotation about a:
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(C-4)

(C-5)

(C-6)
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u, | = 0 cosy,  sinyy b, (C-7)
us 0 -siny cosy b
L 4 L. U U.J L 3J
— b o ~ o A
W=y = Py (C-8)
AN~
b
4,
Yu
l‘Ju ﬁz
\A
7 b,
b,

Y Rotation about b;

Using the individual direction cosine matrices, a

transformation from e to u is obtained using intintesimal

rotations where

sino § ©
cos® % 1
and any angular products (for example (wUGU)) equal to zero.

Since the SSP motion is considered for perturbed small angular
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excursions about a nominal position and first order

approximations; these approximations are justified.

=

e

<" (y)
1 1
0 1
0 —wU
1 OU
—GU 1
by Uy

P oy oy

U
0 1 0 —GU 1
¢U 0 1 0 0
e

(C-9)

o

(C-10)

{C-11)

Transformation matrices for the lower level (L) and

pier (P) are derived similarly, and are

Had

1 o
-0, 1
o VL

o
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Lo, <o)
-0 1
p = p Yp e (C-13)
L %p “V¥p 1
ue - aub + aba + p2e
- N o A [- 2N
= IPUul + ¢Ub2 + C')Uag (C-14)
Using appropriate direction cosine matrix w in the
upper level unit vectors (u) are,
—ue _ o A + [~ ~ ) | ~
W = wUul ¢U(coswUu2 - 31nuUu3)
<] A . A ~
+ OU(—51n¢Uu1 + cos¢U(51anu2 + coswuua))
(C-15)
With small angle approximaticns and first order terms
retained,
— o A o A o A
Y€ = wUul + ¢Uuz + OUu3 {C~-16)

Physically this means angular accelerations will not couple

into each other under perturbed assumptions about a nominal
position.
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Expressions for the lower level and pier angular

accelerations follow the same derivation and approximations.

—-le ° - ° 2 ° =
w = lel + ¢L12 + OL13 (C-17)
—pe o A o A o A
wP® = Ypp:1 + ¢pP; + 0O,Ds (Cc-18)
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Appendix D. Perturbation of a Body Center

To understand translational and rotational motions of
the SSP, an upper level corner (or suspension point) in the
u; or easterly (E) orientation is analyzed. A nominal position
is defined as when the u and e unit vectors coincide with
BEO and Uo the nominal corner and center of mass locations
respectively. A translational and rotational perturbation

moves the U frame to the orientation shown below.

Figure D.1l, Perturbation of a Corner
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The following vectors and points are

defined for the

nominal center of

position for upper

position for upper

nominal upper level

position (easterly)

position (easterly)

Figure D.1.
Points -
-6 = X ey + Y e, + z é3
° Uo Yo Y mass
level
U = x.e, + y.e, + z.€; perturbed center
U C U
of mass
level
UE. = X..e1 + y.. 6, + z.._. €,
o UEO UEo UEO corner
TE = %1 + Y..e, Z. e, perturbed upper
UE UE UE level corner
Vectors -
§U/U - position vector for new position of center
o of mass with respect to nominal center of
mass position.
;UE/U ~ position vector new corner displacement
o with respect to nominal center of mass.
?UE/UE - position vector describing new corner
o position with respect to nominal center
position.
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position vector locating

corner from center of mass

in either the perturbed or

nominal orientation, respectively.
Both are equal and constant for
an assumed solid body

structure.

Tug/u ;UE/Q,

lUE -~ distance an upper level (U), easterly (E)
corner is from center of mass. Corner
is assumed in same vertical plane as
center of mass. lUEel , Or lUEul

Since the new corner describes the needed motion

expressions, two vector equivalences of EUE/U are written
(]

below.
-f = E + }_ (D‘l)
UE/UO UEO /Uo UE/ U’Eo
= lUEel + Xyp€1 + yUEez + ZyE€s (D-2)
Ywe/u. = Yoot Tuesu (D-3)
o o

= Xy&2 + yUe2'+ z €5 + lUEul (D~-4)

Using Eq (C-11), Appendix C,

1 OU -éU

u = -OU 1 wU e (C-11)
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Eg (D-4) becomes

al
1

xUél + YUéz + ZUéa + lUE(él + @Uéz - ¢Ué3) (D-5)
UE/U
o

1

(XU + 1UE)é1+ (YU + lUEOU)é2+ (ZU - 1UE¢U)é3 {(D-6)

Eq (D-2) is the measurements an inertial instrument
might make where Egq (D ~6) relates the translational and
rotational states. Equating the two equations by component

relates measurements and states.

e T (D-7)
we < %Wt e% (D-8)
we T % - hmty (0-9)
For notation reduction UE replaces EbE/UO . The

vector UE is now differentiated with respect to time in

the Earth frame.

UE = (x5 + Lplé + (yy + L;p0 )82 + (7 - L;pdy)és (D-6)

-2 (- I o [] ~ [ o ~

UE = xhel + (yb + 1UEGU)e; + (zU - lUE¢U)e3 (D-10)
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—

pefining corner perturbation vectors UN, UW and
TS for the north, west and south upper level corners
respectively, position and velocity vectors are derived

—— _Q_.
and differentiated as was done for UE and UE.

N = (x4 - lUNOU)81 + (YU + 1UN)82 + (ZU + lUN\bU)eg (p-11)
o_ o ° ~ o A o o -
UN = (xU - lUN@U’el + yye: * lzy * IUN¢U)e3 (D-12)

UW = (xU - lUW)61 + (yU - 1UW®U)e2 + (zU + lUW¢U)e3 {D-13)
- © A (-] o ~ o ° ~

= er1 + (yU - lUWOU)ez + (zU + lUW¢U)e3 (D-14)
Us = (xU + 1US®U)e1 + (yU - lUS)ez + (ZU - lUSwU)eg {D~15)
- o o A o A [ ° A

Us = (xU + 1USGU)e1 + Yy + (zU - luswu)ea (D~-16)

These corner vector and their derivatives are used
in deriving the equations of motion for the SSP upper level.
The lower level and pier subsystems are described by similar
equations with the U subscript replaced by L and P
respectively. The coupling of translation and rotation

motions is apparent from the UE, UON, UW and U8 expressions.
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Appendix E. SSP Iumped Spring and Damper Constants

The second order approximations developed in Egs 3-7
and 3-10 are used to derive the spring and damper coefficients
for the Z and X (also Y) directions. References are cited

indicating information source in MAC SSP report (Ref 14).

Second Stage Isolation

fVN = 1.8 Hz, vertical natural frequency (Ref 14:C-53)
m, = 530.22 lb-sec?- Ft, upper mass (Ref 14E-33)
kSZ = 16955.12 1b/ft
Cgg = 89.95 lb-sec/ft
fHN = 4.0 Hz, horizontal natural frequency (Ref 14:C-53)
kSx = ksY = 83728.99 1b/ft
Cgx = Cgy = 199.89 1lb-sec/ft

Ioad for each isolator is considered as one-fourth
the upper level. Damping coefficient was 0.03 for vertical

and horizontal directions (Refl14:C-10).
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First Stage Isolation

rh
I

1.8 Hz, vertical natural frequency (Ref 14:C-53)

load = m; + mp o= 823.85 1lb-sec?-ft (Ref 14:E-106)

kFZ = 26344.68 1lb/ft

which exceeds vertical stiffness specification of 16920 1lb/ft

(1410 1b/in)

Cpg = 139.76 lb-sec/ft
%{N = 3.8 Hz, horizontal natural frequency
kFX = kFY = 117,412.70 1b/ft

which exceeds horizontal specification of 75,360 1lb/ft

(6280 1b/in) (Ref 14:K-27)

Cpx = Spy = 295.05 lb-sec/ft

Ioad for each isolator is considered as one-fourth the
combined mass of upper and lower levels. Damping coefficient

was 0.03 for vertical and horizontal directions (Ref 14C-10).
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SSP Moments of Inertia

The moments of inertia are listed below, (Ref 14:D-19)

for Iy
IUZ = 5095.8 ft-lb-sec?
_ _ _ 2
IUX = IUY = 2340 ft-lb/sec
for mL
—_ - - 2
ILZ = 2547.7 ft-lb-sec
I = I = 1169.8 ft-lb/sec?

LX LY

Pier Iumped Parameters

All parameters are simply taken from MAC study,
(Ref 14:F-26), using damping coefficients resulting from

soil analysis (Reichert Model).

kGZ = 1.2 X10°% 1b/ft
= 5 -
CGZ = 9.34 X 10° 1lb-sec/ft
— —_ 8
kGX = kGY = 1.08 X 10° 1b/ft
- = 5 _
Sx = Sy 5.41 X 10° 1b-sec/ft
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These parameters represent the combined spring,
damper dynamics in a given direction for the total load
of seismic pier and the SSP. In terms of SSP Lumped
Parameters model the K and C values must be divided by

four or

= f—a 7
kGZ kz/4 3.00 X 10" 1b/ft
Ceg = Cz/4 = 2.34 % 10° lb-sec/ft
kex = Koy = ky/4 = 2.70 X 107 1b/ft
= = = 5
Cax Cay cY/4 1.35 X 10° 1lb/ft

Pier Moments of Inertia

The pier moﬁents of inertia are calculated considering
the seismic mass as a homogeneous rectangular concrete block
of mass 5403.73 lb-sec?-ft (Ref 14¥F-26), standard moment
of inertia formulas (Ref 10:525). Dimensions of seismic

block are taken from Appendix B.

_ T 2

IPY = 107,925.50 1lb-ft -sec

_ e 2

IPx = 234,575.42 1lb-ft-sec

_ —EE_ 2

IPY = 329,289.80 lb-ft-sec
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IPX is used in all transmissibility calculations
since a higher value of moment of inertia represents a
lower natural frequency and greater concern to controller
development. IPY would concern frequencies outside the

active controller bandwidth, approximately a horizontal

natural frequency of 30 Hz.
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Appendix F. SSP Three Degree of Freedom - Translation

Egs 3-21, 3-22, and 3-23 result from Newton's
Second Law, F = ma. This appendix reduces their vector
differential equations using Eqgs D-6, D-10, D-11 thru
D-16 for the upper level, lower level and pier displace-
ments and velocities in the force equations for the
e frame.

First, the vector terms and common coefficients are

made in Egs 3-9, 3-10, and 3-11.

oo F__Q_.- r——.
mUU = —[CS] UE - [KS] UE
_o_ —
UN UN
J -2 —
OwW UW
O <2 —_
LUsJ LUSJ
r_n_l 1
+[Cs] LE + [KS] LE
2 —_
LN LN
2. ——
LW W
P - —_—
thJ LLsJ
+ FUE + FU"" + FUW + FUS
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Cc

[C

[c

C

[C

]

F)

PW
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- [KP + KS]
+ [KF]
+ [KS]
- [KG + KF]
+ [KG]

& |

EEE

(F-2)




+ [C

U Uus-u
gy + 1yg)
(xU IUNOU)
(xU - lUW)
(xU + IUSOU)

o

(yU + 1UEOU)

Yy
[+] o
(yU - 1UWOU)

[+]

Yy
(yU + 1UEOU)
(yU + 1UN)
vy = luw
vy = lyg)
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[}
lonvu? Csy
(-]
Lowty! Cgz
. !
Lysty!

} r
lyety ksx
lon¥y) ksy
Lowty) Ksz
Lysty!




X ar
(<] (] (] (-]
+ Xy, (vp + 1yg0)  (z1, — lygtp)l|Csx
o o (-] o o
(xp, - 19) Yy, (zg, + Iynop)|Csy
Q o (-] -] (-]
XL vy, = 1u%) (2 + 1pu¢llcsy
o o o o o -
(xp, + 1p69) 1, (2g, = lpg¥)]
3 1r
o k- 1pp) (yy, + 1pp0p)  (zp - 1ol ikgy
(xp = 11x%) vy, + L) (2 * 1) Ksy
(xy = 1w yp, = 1pu) (2 + Lpgop)itkg,
(xy - 1;500) vy, = 1) (zp, - lpg¥y)
) : <. )
+ 0 1 + | =Fun| t| O 1 + _FHSW
~Fyp 0 ~Fig 0
Fye Fon Fva L Fys
L - L _ L - -
(F-4)

Similar expansions for the lower level and pier can be mad
using transforms from Appendix D. These expansions are
included in the following expressions for all three bodies
in the e; , €, , and &, degrees of translational freedom.
For the e, direction the pure translation components

and rotation cross coupling terms have also been segregate
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o0 (-]
myXy = T ACgyXy T AKgyXy T Kgy (Typ T Tyy!
[}
o dogyxp *oAkgexp - Koy (lgp = 1)
2
- Coxllys = Iy %y ~ ksxlys ~ lyn! %
[«]
o ocgxllpg = )9 kg (lpg = 1100y,
-~ Fan ~ Frs
o0 -]
mp Xy = —d(Cpy * Coy) Xy = Ak, + kg dxp = kpy + Kgy)
o
+ 4chxP + 4kFXxP + kFx(lPB -1
[+]
+ 4csxxU + 4ksxxU + kSX(lUE -1
°
“lepy * Cox) Qpg =)o = (Kpyx + kgyx) (g - 1
[~
+ Cpx Upg1py)op + kex (lpg = 1
- o
* gy Uyg ~lgy) oy * kgx lys = 1
[-X.] o
mpXp = -4(Coy + Cpylxp = Alkgy + kpydxp = (kgy + kpy)
. _
+ 4chxG + 4kGXxG + ka
Q
4chxL + 4kFxxL + kFx
e
—legx * Cpy) Upg = Ipy)ip = (Kgy + kpy) (lpg -
(-]
+ cox gs ~ lan) g + kgx lgs -
-]
Cpx ps = lpn!n + kpy (g - 1
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Ay -

PW)

UW)

PN" P

UN" "U

(F-6)

(lpg

Qgg -

e

PN)GP

an'?

G
LN)OL

(F-7)

-1

LW

PW)

GW)

LW)



Similarly for the e, direction, the complete translation

equations are as follows,

o0 ©
m = ~4c.,Y _ _ _
vy syYu Skgy¥y key Ly ~ lys)
©
“dogyYy + dkgyyy, thgy 1y ~ 1pg)
(1 1.0
~c —
sy‘'lue o' % - kg (g - 15 O
togyllyp = 1), * kgyUlpp — 1py! 0y
“Fuw ~ Fue (F-8)
o0 L]
m Y = ~4lcp, * cgylyp = 4lkpy + Kgolyy = (kpy + kgo) Ay 1p0)
(-]
+écpy Yp +kpy Yp + kpy (lpy - lpg)
degy Yy 4kgy Yy kgy (yy ~ lys!
“lepy + Cgy) (lpp = 100 = (kpy + kgy) (1 = 11,00,
[+
+ cpy (pg = lpy) 9% + kpy (lpp = 1p) %
o
+ cgy (Qyp ~ 1y 9 + kgy (Qyg - 1yw' %

(F-9)
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(<]
mpYp “Alcgy ¥ CpylYp = Alkgy + kpylyp - (Kgy ¥ Kpy) (g = 154)
o
+acgy Yo +akeyYg * kgy gy = 1gg!
(-]
+ecpy ¥ +4Kkpyyy, * kpy py = 1pg)
o
“logy * Cpy) Upp = 1p)0p = gy + kpy) (1pp = 1500,
[+]
* coy Uge ~ lawl 9 + kgy Ugg = Igw!9%
<
* cpy Qg = g O *kpy Qg - )9
(F-10)

Equations for the éa direction follow the same scheme

» A ~ . .
used in the e; and e, directions.

equations are listed below.

mu§h = -4CSZ;U - 4kZzU
+4cSZ;L + 4kszzL
o
- S5 0yn 7 Lus!u T Kezlun T
- Cgzlygy - 1UE)$U " Kgg gy -
+eg (g = 100y + kg 1
* Cgpllpw - lLE’E’L + kgg (1
¥ Fyp + Py + o + Fug
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The complete translation

us'Vu
ve! ¢u
Ls'VL

Le' L
(F-11)



F2

FZ

cgz) iy

cgp) iy

(1

rz '‘pN

(1

Crz ‘pw

(1

Cgz ‘‘un

sz (1
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sz) iy
sz) Uiy

FZ PN

F2 PW
SZ UN

SZ

Ls'VL
Le' %L

ps)Vp
pE’ ¥p
us'Vu

ue' %y

(F-12)




mPZP = ~4(cGZ + CFZ)ZP - 4(‘Gz + kFZ)zP
+4cGZ zG +4kGZ ZG
+4 z +4k
Crz %1, Fz L
(egy + Cpg) (Qpy = 1pgl¥p = lkgy *+ Kpp) (lpy = 1pgi¥y
[+
(Caz * Cpg) Qpy = lpp)®p = (kgy + Kpp) (Qpy = 1pp)dy
(-]
+ cgg gy ~ 1gs)¥g t kgg gy ~ 1656
[-]
+ Cop gy ~ 1ge) % + kgz Ugw ~ 168V %
o
+cpg Iy~ lnslvy * kpy Qpy = gty
(-]
+cpg g = eV % + kpy Qpy = 1pp)dp
- Fyg = Fow - Fvw - Fys (F-13)
NOTE: Equations for e; direction do not have (1US - 1UN)kSY

and similar terms because the isolator suspension points,
the corners of each level, are in the horizontal plane

containing body center of mass. The SSP was designed so
weight could be added or subtracted to adjusted center of

mass for various gyro test tables and test items.
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The following matrices could be used to relate upper
level actuators (or lower) shown in Figure 3.4 to resultant
forces for six degrees of freedom. An assumption is made
that one half the actuator force is available for trans-
lation or rotation controller command.

The vertical actuators are utilized as:

[ 71 T . . T T 7
Fyn T 1 0 Tx
Fys - '113 % 0 Fy
FIVW ) 0 % % TY
e | |0 T -1 | J (F-14)

Similarly the horizontal actuators are controlled as:

Fun 0 % % Fx

Fue ] o .1 L T,

Fuw % 1 0 _ Fy -

THE 3 i ° (F-15)
i L -

where, F, indicates upper actuators (f could easily be
substituted for lower level)

L, actuator corner location from center of mass.
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Appendix G SSP Three Degrees of Freedom - Rotation

The mechanics of the rotation equation derivation are
shown for the upper level isolator moments in vector

notation. Essentially the method is

—_— — [+1+] n [ X+ [-X.) N
I o = quwuel + IUY¢Ué2 + IUZ Ue3
us
= r X Fi (G-1)
i=UE
where
IUX R IUY , IUZ are moments of

inertia about &, , &, and &,; axes

?i isolator moment arms (UE, UN,

UW, US)
Fi isolator forces for each corner
us
sum all force moment arms from
j=yg VUE, UW, UN to US

The process proceeds using linear approximations for

moment arms, namely
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c
=
]
|
[¢]

o

Uus = 1. _.e> (G-2)

No e components arise because isolator suspension points
are assumed to be in a horizontal plane containing body
center of gravity. This assumption is reasonable for the
SSP (upper level, lower level) due to construction specifi-
cations and adjustable center of mass capability with lead
shot compensation for gyro table loading. The pier clearly
violates this assumption, but will be dealt with later.

The process continues with basically a cross product
of all force terms (right hand side) of Eq F-1.

[-3:]
4

[Tyxty Tyyty * TyzOle
-(1,g€1) X (=[C{ITE - [KgI1UE)
+(Lygé2) X (-[CgION - [K TN
A -—L —
H-1y81) X (-[CgITR - (K ITW)

+(-1,82) X (-[Cg1TS - [K 1TS)
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+(1 ;1) X ([CLILE + [KgITE)
+(1gye2) X ([CGITY + [KGITN)

+(-lyger) X ([CGITW + (KgIIW)

+(-1yge2) X ([CGITS + [KGITS)
+ T (G-3)

The vector T is a torque produced by the active

controller actuators and is specified

+ 1 + 1

+1 usFvs)les

H|

[1ypFye unFuN oWt vw

+ [1yp) (FFup) + (Flg) (P e,

+ [(1UN)(—FUN) + (—IUS)(—FUS)]ea
(G-4)

Minus signs are retained because they emphasize
the actuator orientation. No£e also, the sign on the
actuators forces and their parallel to force column vectors
in Eq F-4.

The cross product operation shown in (G-3) is

continued for the lower level,
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oo o0 00

(Irx¥y, + Ipydp, + Ipp0p)e
+(181) X (-[C, + CS]ﬁE - (K, + KG]TE)
+(1€2) X (-[C, + CJIIN - [K, + KJIN)
+(-1,81) X (-[Cp + cs]fﬁ - [Kp + K)TW)
+(-1.8,) X (~[cy + cS]fE - [Kp + K ITB)
+(1p81) X ([CL)PE + [K,1PE)
Hlpg82) X ([CIPN  + [K,)PW)
+(-1pne1) X (IC, 1P + [K,)PW)
+(-1,682) X (ICLIPS + [K,1PS)
+(1ype1) X ([cs]ﬁ% + [KG1TE)
+(1g82) X (ICGITN  + [Kg1TN)
+l=1ge1) X ([cslﬁh + [Kg1TH)
=1 g82) X ([csm% + [Kg1TB) (G-5)

. ~
The moment arms used for pier forces, namely 1 __e:, etc.,

JE
are certainly bad assumptions since isolator suspension
points do not lie in the center of mass plane. For this study
the approximation is justified in the passive response

considerations.
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Continuing the cross product for

equations are

00
(Ipx¥p * Ipytp

e;) X

X

Eq G-4 defined T.

oo + IPZZ)OP]_e__ -
(-[Cy + CEIPE - [K
=2
(—[CG + CF]PN - [K
(-[Cg + CLIEW - (K
(-[Cg + CpIPS - X
0 —_—
([CLITE [k ]GE)
([CgITN [K 1GN)
(Icg1ew [K1TW)
(Ic,)ds [K,1T5)
(IC ILE [Kp1TE)
([CLIIN [Kp)IN)
([CpITW [Kp ) TH)
(Icp1TE [Kp1I3)

G

G

G

G

the pier, the

+ KF]PE)
+ KF]FN)
+ KF]PW)

+ KF]FS)

The operations indicated in Eqgs

(G-6)

G-3, G-5 and G-6 are carried out with the components tabulated

3 ~ »~ ~ k3 » 0
into e; , e; and e; components containing the pure rotation

and translation cross coupling terms.
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The results for the &, direction are

Sz

00 o
Iy = ~Cgzpnlun * lystus!Vu = ¥sz Qynlun * 1USIUSN’U
o]
*Coz Qunlin * Yuslis've * *gz (unlin * lyslng!Ve
[+]
~Cgz lyn ~ Yys?Zy ~ *szlyy ~ lyg) 2y
z K 1
tCop lyy ~ lys)2y * Kgplyy ~ lys)?n
Hlonfvn ~ lusfys
00
Ix¥n = - V(L1 +1 .1 ) - (ke +k.)(L.1_ +1 M
LX'L = =lopy + Cgp) Upplin * Lislig)¥y = Bpg + Xgz) Qpplin + rgligl¥y
-]
+Cpy Urnlen * lnslps!¥p * Kpz Qonlpn * logles!o
(-]
¥eg, (Lpelun + Lpclucy + ke (110 + 1 1 )y

LN"UN LS7US EZ2 ""LNTUN LS™US

-}

“lepg * Cgp) Uy = Lpg)2y = (kg + kgp) (L0 = 1 o)z
-]

Cpg Iy = gl 2p + kpgp 1y = 1pg)%p
z 1

+Cor Uiy ~ lng) 2y + *gz iy ~ 11s) 2y
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(-] [+] (]
Ipgp = ~(cgz * Cpg) Upylpy * lpslps)¥p = gz * kpg) Upylpy + 1pglpg)¥p

o

+c ., (1,1 + 1 .1 )wG+-k (1.1 +1__1 )wG

cz enten ps'Gs cz ' *pnteN ps'Gs
o
tepg Qpnlon * lpslig!¥s * ¥rz (pnlin * lpslns!¥y
o
“legy * Cpg) (py ~ lpglzp = (kgy + kpp) (lpy = 1pg)zp
o
+ gy llpy = lpglzg * Xgzlpy = lpglzg
o
+ cppflpy ~ lpglzy *+ Kppllpy = lpg) 2z
- lUNFVN + lUSFVS (G-7)

The &, rotation equations are as follows

00 [+2
Iyy®y = ~Cgz Lyrlue * luwlow’ ®u = ¥sz Curlue ¥ luwluw v

e (g 1 * Yuw % t XszQue e t luw 'O
[}

“Cgz Qyw = ur'Zu ~ kszluw ~ lug)Zu
(2

tCg, (yy = Iy 2y + kg Quy ~ lur) %

-1 + 1. F

UEFVE UW VW
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00

Tyt = ~(Cpg * Cgp) Upphp *+ LV, = Kpg *+ Kgp) (Lo + LatudL

(1. .1 + 1 .1 + k(1 __1 + 1.1 )WP

[+]
+CFZ LE"PE LW PW)uP FZ "LE PE LW PW

°

*Cgz Mrplue * lrwlew'¥u * Kgz (plye * LwlewVy

-]

“Cpg * Cgy) Opy = 1pplzy, = (kpy + Kg) (1 p - 1)z
0

trepp Uy = 1pg)2p + ke Ly — 1007,
o

*Cepllyy ~ Ipp)Zy * kg (py — 1pp)zy

[ 1]

Ipybp = ~(Cgz *+ Cpp) Upplpp + Lplpy) 9y = (kgy + kpp) (Lol + Lowtew) %p

+ k., (1.1 +11)<1)G

PE"GE PW GW

(-]
tCoz pplor * lowlaw %G Gz

o

+ 1. .1 )¢L + k., (1.1 + 1. .1 )¢L

+Cpy (lpplig PW LW Fz '“PE'LE PW LW

(]

“(Cgz * Cpg) Upy = 1pplep = kg, + kp,) (1, - log)zp
L]

+ Cozlpyw ~ lpplzg * kggp(lpy = 1pg)2g
(-]

+ Cppllpy = lpglzp + kg (g, - 10027

+ 1 1 __F (G-8)

vefve = luwFvw
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Similarly, the é&; rotation equations are as follows

(1..1 + 1. .1

Csx'“untun

+

cSY(l 1 + 1.1

(1.,.1 + 1 .1

Csx tuntin

4

(1.1 + 1.1

Csy'“uE'LE

(1 -1..)x

Csx'tus UN

(1 -1 )§ +

Csx'tus un’ ¥,

Ceae (1

sylug = luw'Yu

(o]
coylyg = oW ¥r *

1 + 1 _F + 1

UEFHE UN" HN
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UETUE uw UW)

~ ko (1

Do
!

oo
+

kay (1

sx'“us

~ kgylyg ~

Koy (1

SY'"UE

oW HW T

us

-
kox Lunlon * lustus!

+ %
kgy yplue * Luwluw! ]
ksx (tun v * lus 1s’

+ OL
kgy Lyplre * luwliw
IUN)xU
Lon)*L,

Low! Yy
lyw) ¥y,
ustus

——a




] . )
(Cpy + Cox! Untin * Lishis! (Kpy + X Oty * 1LSlLSﬂ
- + OL - + OL
L(CFY*'CSY)HIEHI:+ Ll koy'*kSY’UIE}LE'*]IMFLW)
e L1+ 1.1 ﬂ P (1. 1.+ 1 .1 ;
Cpx \tLNTPN 1LS'PS FX'“LN"PN LS PS
o
+ + Op * + op
LCFY(lLElPE + loglew kkFY(lLElPE + Lowtew
| 1.1+ 1.1 J —k (1.1 + 1. o1 ]
cox Lenlun ¥ *nstus ox Ipnton * lustus?
+ + 0y + + oy
LCSY(lLElUE + lrwlow LkSY(ILElUE + Lywtow
-]
- (epy * Cgx) (lps ~ ¥~ Wex 7 key) ps ~ L' ¥
+ cpyllpg = ¥ * kpxpg = low) *p
[+]
+ cgellpg = Igt¥y * keylps ~ 1oy *u
-]
- (epy * Cgy) Upp ~ liwdVL T (kpy + kgy) pp ~ 1wV
[+]
+ Cpyflpp = wl¥e ? kpy(lpg = tow!¥e
+ cgyllp ~ Ipwt¥y * key (lpe ~ ow!Yu
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- -‘ -1
(cez * rx! Tenten * lpstes) (key * ¥px) Qpylpn * psles!
(-]
+ 8, - + 9
SCGY + o) (pplpn + Ly Ukcy + Kpy) Qpplpe * 1PW1PW2
y [ ]
cex pylon * leslcs’ kex pnton * Ypstes’
(-]
+ Og + + o
LCGY(lPElGE + lpwlew! LkGY(lPElGE + loulow
] T
cpx Lpnlin * lplesﬂ kpx Qpnlin * lpslns’
(-]
+ OL + + OL
LCFY(lPElLE + lpglew! LkFY(lPElLE + lpplnw
©
(cox * Cpx) (ps = ten)*p T (kox * %px) (ps = lpn'*p
-]
cexlpg = Yo' ¥ * kex Ips ~ lpn'*c
° -
cpg(1ps ~ 1pn'*p * key (1pg ~ lpn)*L
o
(cqy = Cpy) Upg ~ low!¥p ~ lkgy * key) pg ~ lpw ¥p
Q
ceylpg = lpw!Ye * koyUpg low!¥g
(-]
cpylpg = lpw! ¥y * kpy (lpg = lpw! YL
- - G-9
lyeFue =~ lunFan = ‘owFaw ¥ YysFus (6-9)
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Appendix H. Simple Three Mass System
Transfer Function Polynomial Coefficients

ZU(s) _ As? + Bs2 + Cs + D

Z.(s) Es® + Fs® + Gs* +Hs® + Is? + Js + K
L 4

where numerator terms are

A = CgCr
N B = cSchF + chGks + cSchG
c = chGkS + CGkaS + cSkaG
E D = kgkpls

and denominator terms are

E = mymmp
{ F = “me(cF + cs) + rrme(cF + cG) + mm,Co

mpnb(ks + kF) + MLCCp + umLkS

Q
It

+nth(cF + cs) + mLcS(cG + CF)

+nme( kG + kF)
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H = mP(cSkF + chs) + "ch(kF + ks)

'HqJ(chS + cSkF) + cgG o + rnLkS(cG + cp)

+"bk3(cF + cs) + mLcS(kG + kF)

I = mLks(kF + k‘S) + mPkSkF + nUkF(kG + kS)
+nkakS + cS(ch'S + kFcG) + CFCGkS

J = C

K = D

All terms in the coefficients A thru J are dimensionally
consistant using basic units of L, T, M or length, time

and mass, respectively.
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Appendix I. Transmissibility Polynomial Coefficients

The following coefficients were calculated from
lumped parameter spring and damper values given in
Appendix E using algorithums developed for the full, dual

and single isolation transmissibilities.

Full Isolation

The full isolation transfer function numerator and
denominator polynomial are expressed in the notation of

Appendix H

TZU/G(jw) polynomial coefficients are

A = 223.3061

B = 112,875.4751

C = 18,750,416.3104
D = 1,019,400,524.282
E = 1.0000

F = 176.7548

G = 23,603.6706

H = 209,405.7952

I = 16,105,109.6289
J = C

K = D
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-4

TXU/G

g o =& ¥

w0 ™o

-

o

(jw) or TY

]

o N w Y

T O = m

U/G(jw) polynomial coefficients are
606.8114

616,791.8850

200,095,712.8612

20,182,239,747.25

1.0000

108.5847
24,277.2135
508,769.0142
69,169,079.5072
C

D

polynomial coefficients are

886.4462
901.025.9320 -
292,305,120.3192

29,497,358,961.09

1.0000
50.3383
14,480.0687
379,095.3026
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I = 53,235,281.9575
J = C
K = D

TwU/G(]m) or T¢U/G(3m) polynomial coefficients are

A = 590.0608
B = 298,260.4301

C = 49,545,813.4351
D = 2,693,648,362.547
E = 1.0000

F = 93.6203

G = 13,351.4852

H = 248,416.7087

I = 19,281,576.4410
J = c

K = D

Dual Isolation

The dual isolation transmissibilities polynomial

coefficients are listed using the notation of Eq 4-29.
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polynomial coefficients are

1.2919
487.0599

45,904.7099

1.0000
3.8078
719.0572
b

C

polynomial coefficients are

117.2864
37,177.3628

2,840,484.2000

1.0000
173.6255
22,471.5806
b

[o]
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i

polynomial coefficients are

111.2444
35,261.6579

2,694,091.4752

1.0000
164.6773
21,313.4451
b

(o]

polynomial coefficients are

6.0610
4950.7948

1,010,309.3674

1.0000
8.2503
3377.7858
d

C
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o
I

+h
Il

= S}
Il

polynomial coefficients are

143.4204
85,704.0493

11,393,496.8012

1.0000
101.7669
20,786.5958
b

C

polynomial coefficients are

143.1919

88,565.0200

11,973,740.2255

1.0000
96.6045
19,789.7791
b

(o}
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+h

=2 e}

TOL/P(jw)

g;i

0 U

rh

= R Te]

polynomial coefficients are

27.6590
22,592.4016

4,610,434.4703

1.0000
18.2194
7470.1610
b

c

polynomial coefficients are

96.5325
57,685.1711
7,668,666.9828

1.0000
35.1309
7720.9232
b

C
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TOU/G(jw)

r
Il

o e
i

polynomial coefficients are

97.3424
60,206.8298

8,139,793.1175

1.0000
34.9107
7,747.9586
b

[o

polynomial coefficients are

6.9904
2635.3787

248,380.7404

1.0000
9.1608
1,733.7900
b

[
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T~

-

——

|}

polynomial coefficients are

131.1338
41,566.6994

3,175,845.3040

1.0000
86.0130
11,278.3372
b

c

polynomial coefficients are

125.2327
39,695.5854

3,032,856.2097

1.0000
85.0357
11,142.5359
b

(o]
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Single Isolation

TZU/L(jw)

TZL/P(jm)

N T2p g (3w

TXL/P(jw)

TXP/G(jm)

TOL/P(jm)

TOP/G(jw)

Il

The single isolation transmissibilities are listed in

standard polynomial transfer function form.

0.6785jw + 127.8100

(jw)? + 0.6785(jw) + 127.9100

0.67859w + 127.900

(jw)? + 0.6785(jw) + 127.9100

149.97803jw + 19,269.1221

(jw)? + 149.9780(jw) + 19,269.1221

1.50799w + 631.6547

(Fw)? + 1.5079(jw) + 631.6547

1.43253,y + 570.0683

(jw)? + 1.4325(jw) + 570.0683

86.8716jw + 17,342.2099

(jw)? + 86.8716 (jw) + 17,342.2099

3.06079w + 1,282.0922

(jw)? + 3.0607(jw) + 1,282.0922

3.0120jp + 1,198.6119

(jw)? + 3.0120jw + 1,198.6119

31.3219jw + 6,252.8156

(Jw)?2 + 31.3219(jw) + 6,252.8156
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Ty p, 30)

i

TYy,/p (30

TwP/G(jw)

1.49979w + 282.6902

{jw)? + 1.4997 (jw) + 282.6902

1.5535jw + 292.8440

(jw)? + 1.5535(jw) + 292.8440

81.75043w + 10,503.2636
(jw)? + 81.7504(jw) + 10,503.2636
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Appendix J. SSP State Representation -
Upper and Lower Level Dynamics

The state vector X is written in terms of SSP variable

and then in true state vector notation.

[ _ ]
X
X
X
Y
X = X
S z
X
2
X
)
XO (J-1)
- J
where for translation
XLW X,
p °
— XL Xz
X = = (J_z)
X
Xy X,
[+]
| *u | | X

262




|

>

|
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(J-3)

(7-4)

(J-5)

(J-6)




@LW XzJ
[+]
% = o X22 (3-7)
0
OU X23
[+ ]
| %] .

The A matrix is written in terms of partition
notation and then in terms of SSP isolator placement lengths

from each body center of mass, spring and damper variable.

Ax ' l Axe - (J-8a)

| A, | | LY (J-8b)

A = l A, A I Az¢ I (7-8c)
‘ sz Aw | (J-84)

[ Ay |2 ‘ (T-8e)

L By Boy | | A | (J-8£)

Zero matrixes are omitted, but understood from Eq
5-4. Each partition is represented from Appendix F and G

differential equations as shown on the following pages.
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Random Isolator Placement

The preceding A partitions were calculated using random
isolator placement. The isolator misalignments were assumed
to be a uniform distribution having a mean of 53 inches and
over a uniform distribution of plus or minus one-half
inch. Granted, these misalignments do represent a "worse
case" from MAC's specification (Ref 10:15) of plus or minus
a one-quarter inch isolator placement.

The placements were generated by a CDC 6600 FORTRAN
function RANF thch returns random numbers between 0 and 1.
The isolator locations were calculated according to the

following equations.
1 = RANF + 52.5

Placement values produced for the SSP isolators are

given as

lUE = 53.0796 lUN = 53.4504

1UW = 53.2860 1Us = 52.7976

lLE = 52.9536 1LN = 52.5060

le = 52.7748 1LS = 52.8048

1PE = 53.1888 le = 52.8816

1PW = 52.6320 1PS = 53.3316
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Appendix K - CGTPIF Digital Controller Designs

Appendix K contains the results of designing possible
digital LQ-PI controllers with CGTPIF. Only controllers
proposed in Chapter V with solutions are listed on the
following pages. Controller variables follow Egs 5-6 and
5-7 for Figures 5.2A and 5.2B in Chapter V. Each controller
type design is referred to by a case number from discussions
in Chapter V for different actuator configurations and cost

criteria designs indicated by a letter.
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